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Abstract

Basic Local Alignment Search Tool (BLAST) is a standard computer application that
molecular biologists use to search for sequence similarity in genomic databases. This
thesis describes a FPGA-based hardware implementation of the BLAST application.
The main objective of this document is to explore the feasibility of using this new
technology to realize a scalable, portable and cost-effective FPGA-based accelerator
for the BLAST Algorithm. Since it is not practical to map the entire application to
hardware, a profile study was conducted that identifies the computationally intensive
part of BLAST. This computationally intensive critical segment has been designed and
implemented in the FPGA while the rest of the application runs on a PowerPC proces-
sor in the FPGA. The concepts of portability, scalability and cost-effectiveness of the
implementation are also demonstrated from the results obtained.
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Chapter 1

Introduction

In the late 1970’s, the fields of computer and information science and biology came
together to give rise to the new field of bioinformatid®] Bioinformatics uses com-
puters to advance the scientific understanding of living systems and it does so more
accurately and more productively than what was previously possible (via manual tech-

niques). The discipline is increasingly playing a key role in fields as varied as:
e Molecular biology
e Genomics
e Functional genomics
e Systems biology
e Protein design and engineering
e Pharmaceutical development
e Medicine

e Ecology



e Population genetics
e Agriculture

With the advent of bioinformatics, scientists have the possibility of studying the
genome in a number ways by applying already established analytical and theoretical
techniques, such as mathematical models and computational simulation, to digital rep-
resentations of the genome. These computational techniques aid the process of genome
sequencing and similarity searches. The main focus of this thesis is to improve the
computational aspect of such tools that would enhance the productivity of scientists
and biologists.

For example, after sequencing the DNA of an organism, a scientist interested in
learning the function of a particular gene might start by checking to see if its sequence
is similar to any other gene of a data look for this new information helps scientists and
biologists discover the function of a new gene, reveal gene functions, uncover relation-
ships between organisms, and other related scientific activities by comparisons of sec-
tions of sequence. Prior to the development of the field bioinformatics or computational
biology, biologists used to manually compare the genes (queries) with databases (se-
guences) of genes. This is indeed is a very time consuming process and more over the
probability of human error is very high. The sequence of gene determines its function,
so finding similar sequences provides clues to a new sequence’s function. Moreover,
the initial assembly of a new sequence relies on a large number of similar comparison
operations.

BLAST is an acronym for Basic Local Alignment Search To6].[ Although
BLAST originated at the Washington University in St. Louis, its development contin-
ues at various institutions, both academically and commercially. BLAST is one of the

tools used by scientists in order to find regions of local similarity between sequencesi.e.



the comparison operation described above. It compares nucleotide or protein sequences
to sequence databases and calculates the statistical significance of matches. The results
obtained from a BLAST search have a well-defined statistical interpretation, making
real matches easier to distinguish from random background hits. BLAST uses a heuris-
tic algorithm which seeks local as opposed to global alignments and is therefore able to
detect relationships among sequences which share only isolated regions of similarity.
However various reports and journal pape&g festablish the fact that these results are
appropriate for a scientist to determine the significance of the search. Since BLAST
algorithm is based on heuristics, it is not the most accurate tool in similarity searching,
but it still remains as the most widely used tool among biologists because of the nature
of the results that it produces.

In order to know the importance of BLAST in a practical perspective, let us as-
sume that various biologists and scientists discovered few new microbes from various
field experiments. In order to find out the genes present in the new microbes, one can
run a BLAST similarity search on the newly found genes and various known genome
database&igure 1.1lis an example illustration the problem described above. In the
Figure 1.1, the query can be considered as a part of an unknown gene found from the
field experiments and the subject database as part of a genome database.

In Figure 1.1 the first example compares a query sequence of length 24 which might
be a part of the unknown gene sequences of the microbes found from the field experi-
ments with a part of the subject sequence of length 23. From the results produced by
BLAST, it can be interpreted that there is no perfect match between the query sequence
and the subject sequence, but there is an identity match of approximately 95% with
a score of 32.2 given a gap of '1’ between the two sequences. Moreover, the Expect

value of 0.005 indicates that a sequence with a similar score is unlikely to appear in the



Query Sequence
AGCTTTTCATTCTTGACTGCAACG

Subject Database
..AGCTTTTCATTCTGACTGCAACGGGATGTC...

(@)

Score = 32.2 bits (16), Expect
Identities = 23/24 (95%), Gaps
Strand = Plus / Plus

Query: 1 agcttttcattcttgactgcaacg 24

LT TR
Shjct: 1 agcttttcattc-tgactgcaacg 23

0.005
1/24 (4%)

Score = 22.3 bits (11), Expect = 9.9
Identities = 11/11 (100%)
Strand = Plus / Minus
Query: 3 tgactgcaacg 13
T
Shjct: 6627 tgactgcaacg 6637

(b)

Figure 1.1. Example Query - Subject Database Comparison



subject sequence. So based on these results obtained from BLAST, the scientists gather
enough information in order to proceed in the right direction about the new microbes.
From the example mentioned above, it is also clear that BLAST can be used to infer
functional and evolutionary relationships between sequences as well as help identify
members of gene families.

BLAST software is open source and runs on various high end machines to low level
desktop machines which makes the tool more powerful. However, since speed is vital in
making the algorithm more practical, most medium to large bioinformatics laboratories
also include special-purpose computing machines to run applications like BLAST. As
one would expect, a special-purpose equipment with custom hardware which is much
faster than BLAST running on a general-purpose computer. Various labs use these type
of machines41] when turn-around time is important or, when they want to manually
prioritize their jobs. However, the issue with BLAST now is the time to search, the
database is essentially proportional to the size of the subject database. Therein lies
an important problem, even though Moore’s Law has processor performance doubling
every 18 months (a compound annual growth rate of 59%), biological databases are
growing even fasterFigure 1.2shows the growth rates of several key indicators since
1994 on a semi-log graph. The data points come from GenBalihkd public collection
of sequenced genomes. A line fitted to this data shows a compound annual growth rate
of 77%. Also important to note is the growth rate of 1/0 subsystem (disk and interface).
The most aggressive estimatdd][suggest a 10% compound annual growth rate in
performance while other22f] suggest a more modest 6% growth rate. Regardless,
these trends have an important consequence in answering the same question (is this
gene similar to any known gene?) will take longer every year. In other words, the

problem size is growing faster than single processor performance and much faster than



I/O subsystems.

If Moore’s Law does not provide enough compute power, one naturally would seek
a parallel solution. However simply using multiple computers (perhaps organized as a
cluster) presents its own problems. For examplEigare 1.2shows, 1/0 performance
is an issue. So a cluster must choose between expensive I/O subsystems on every node
or a shared network file system that is generally an order of magnitude slower than a
local disk. Second problem is cost, although commaodity cluster nodes are getting less
expensive, every node has a set of basic costs: local hard drive, local RAM, power
supply, case etc. While cost gets multiplied with the number of nodes, but they do not

directly contribute to the solution.
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Figure 1.2. Compound annual growth rate of database problem size, single
processor performance, and I/O subsystem performance

So the question is can the problem expressed be dealt in an effective way by FPGA's.
The termeffectivein the above sentence includes the terseslable andcost-effective
as its main objective. Reconfigurable Computing (RC) is an area of computing where

in FPGA's are used as computational devices. FPGAs are devices with a sea of logic



gates and interconnects between the gates. In this field of computing the programming
is done at the gate level usually using a hardware description language (HDL) rather
than at the machine instruction level by high level or low level languages. FPGA's also
advance by Moore’s law in area and clock frequency of the die but unlike FPGA's, or-
dinary microprocessors use the transistors as memory units instead of using them as
computational units. But in the case of FPGAs the more the number of transistors
available more is the potential for the number of computational uABls Moreover
research has also demonstrated that FPGA's are well-suited to processing bioinformat-
ics applications in generaBf] [38] [30]. However, BLAST specifically has not been
addressed.

This brings us to the central question of the work, if BLAST is so critical to sci-
entists and biologists and given all the advantages of using FPGA'S over microproces-
sors, Is a scalable and cost-effective Reconfigurable Implementation of BLAST feasible
which can aid scientists and biologists in a more productive wayplicit in the term
scalableis also how well the design can scale as technology progresses over the years
according to Moore’s Law which continues to give double the number of transistors
every 18 months. And implicit in the teroost-effectives the measure of the price of
computing power which also means the amount of performance obtained per dollar ($)
when compared to other implementations over various other architectures available.

And the answer for the question is explained in the subsequent chapters that follow
with Chapter 2 providing the context for the work by describing related work, a general
background on similarity searches and FPGA'’s in regard to Reconfigurable Computing.
In chapter 3the current BLAST application is analyzed and explained. The compu-
tationally demanding parts of the application are identified and targeted for hardware

implementation. The general hardware design is explained. Later dmjter 3the



resulting performance of the basic design is shown. Specifically, the scalability and
cost-effectiveness of the design are analyzed. From the analysis of results, conclusions
along with a brief description of future work is explainedccimapter 5

In order to answer the above question and add knowledge to the body of science,

these are the list of contributions as part of the thesis.

e Repeated and verified the profiling characteristics as specifiedsign and Im-

plementation of Open source FPGA-based accelerator for BLISS[T

e Extended the profiling characteristic to several machines with different proces-

sors, memory, disk and network interfaces.

e Helped to quantify the I/O bound characteristic of BLAST by running it across

different file systems with different bandwidths.

e Ported BLAST to Xilinx ML-310 Platform FPGA development board and char-
acterized the essential things needed to do a port
— Developed a hardware design which is scalable and cost-effective .
— Ported Linux to a Platform FPGA .
— Developed a device driver that accesses the hardware from the software .
— Developed a patch to the BLAST software needed to invoke the hardware .

— Implemented and measured the pros & cons of using the On - Chip BRAM'’s

as a cache in order to speed up BLAST .

— Proved the concept of portability, by a dummy port to a Xilinx ML - 403

development board .



Chapter 2

Background

This chapter provides information on two aspects of the general problem. First
we provide a brief introduction to the general problem and current software solutions.
Second, we describe FPGA's and Reconfigurable Computing in general. Together we

provide a context for the work described in the next chapter.

2.1 Bioinformatics and Similarity Searching

2.1.1 Genetics and Sequencing

Instructions that provide almost all of the information necessary for a living organ-
ism to grow and function are in the nucleus of every cell, so a cell is usually described
as the smallest living organism. These instructions tell the cell what role it plays in a
body. The instructions are in the form of a molecule called deoxyribonucleic acid, or
DNA. DNA consists of two long, twisted chains made up of nucleotides which act as
a main building block. The bases in DNA nucleotides are adenine, thymine, guanine,
and cytosine which are represented by the letters A, T,C,G respectively and they can be

strung together in billions of ways.
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A single strand of DNA is made of letters:
ATGCTCGAATAAATGTGAATTTGA
These letters make words:
ATG CTC GAA TAA ATG TGA ATT TGA
These words make sentences :

< ATG CTC GAA TAA > < ATG TGA ATT TGA >

Figure 2.1. Sample DNA Sequence

As shown inFigure 2.1sentences which constitute pure data of a DNA sequence
make genes and the scientific study of genes is called genetics. So, every organism,
including humans, has genomes that contains all of the biological information needed
to build and maintain a living example of that organism. Genes tell the cell to make
other molecules called proteins and proteins are required for the structure, function, and
regulation of the body’s cells, tissues, and organs.

Much effort in the field of genetics continues to be spent locating genes and more-
over the rate of accumulation of sequence data is exponentially growing. This has been
partly due to the fact that the technology to carry out DNA sequencing has rapidly
advanced. With the technology available to date, the entire job can be carried out by
robots - from an input of tissue, the robots can automatically extract the DNA, am-
plify regions of interest, and prepare sequence cocktails. These are then loaded onto
the gels of automatic sequencing machines. These machines will run the gels, a laser
scans the gels and calculates the DNA sequence, finally the sequence is automatically
entered into a computer, and the computer will automatically assemble the fragments

and may also do some preliminary analysis. In addition, the number of laboratories that
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routinely sequence DNA has also increased.

Today'’s genetics investigates various aspects at the genome level and bioinformatics
has made the job of genetics quite easier since its advent. Since the sequence of DNA
encodes the necessary information for living things to survive, determining a sequence
is therefore useful in research into why and how organisms live, as well as in applied
subjects. For example if it is said that a particular organism has "X’ percent of it's DNA
with humans then the number indicates the percentage of DNA identical within the two
which indirectly indicates that that particular organism has "X’ amount of that particular
functionality similar to human beings. So if the same described above is related to an
unknown gene sequence, various scientists and biologists would compare the unknown
sequence against various other sequences in order to determine the functionality of the
new gene or at-least could determine a hypothesis based on the results obtained. But
this is not simply a case of finding an identical match or not simply a case of finding a
slight mismatch. Indeed it’s a case of finding enough of a match in part of the sequence,
such that the partial match is statistically unlikely to happen by any chance. So the way
sequence matching is done is by sequence alignment. So in terms of the process of
sequence alignment all the possible alignments are looked at and a score is assigned to
each of them and finally the alignment with the best score or above a certain a threshold
are usually the ones taken into consideration.

Since the above process is highly compute bound, various search algorithms have
been defined and various software tools have been designed so that all the sequence

matching can be done by computers instead of biologists.

2.1.2 Database search algorithms and Tools

The most important Database search algorithms present are
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e Smith - Waterman Algorithm
e FASTA

e BLAST

2.1.3 Smith Waterman Algorithm

The Smith-Waterman (SW) algorithr39] is a search algorithm developed by T. F.
Smith and M. S. Waterman and the algorithm implements a technique called dynamic
programming, which takes alignments of any length, at any location, in any sequence,
and determines whether an optimal alignment can be found. The algorithm compares
two sequences by computing a distance that represents the minimal cost of transform-
ing one segment into another. Two elementary operations are used: substitution and
insertion/deletion, also called a gap operation. Through series of such elementary oper-
ations, any segments can be transformed into any other segment. The smallest number
of operations required to change one segment into another can be taken into as the
measure of the distance between the segments. Based on these calculations, scores
or weights are assigned to each character-to-character comparison: positive for exact
matches/substitutions, negative for insertions/deletions. Scores are added together and
the highest scoring alignment is reported. The scoring scheme in this algorithm is based
on exact matches and gaped matches. An ungapped scoring scheme has two values, one
positive value for a match, and a negative penalty value for a mismatch. A gaped scor-
ing scheme has three values, a positive match score, a negative gap initiation score, and
a negative gap extension score ( with the extension score smaller in magnitude than the
initiation score) . Instead of looking at an entire sequence at once, the algorithm com-
pares multi lengthed segments, looking for whichever segment maximizes the scoring

measure. It is superior to other algorithms because it searches a larger field of possibil-
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ities, making it a more sensitive technique; however, individual pair-wise comparisons
between letters slows the process down significantly because these computations re-
guire execution time in the order of quadratic time.

Choose two strings'l and S2 of length/; and/, . To identify common sub-
sequences, the SW algorithm computes the simildfity, j) of two sequences ending
at position: and; of the two sequences] and.S2.

The computation of (i, j) for 1 <i <1;,1 < j <l,. is given by the following

recurrences.

H(i,j) = max{0, E(i,j), F(i,j), H(i — 1,5 — 1) + Sbt(S1;, SQj)}
E(i,j) =max{H(i,j — 1) —a, E(i,j — 1) — B}
F(i,j) =max{H(i—1,j) —a,F(i—1,j5) — 5}

whereSbt is a character substitution cost table. Initialization of these values are given
by H(i,0) = E(i,0) = H(0,j) = F(0,5) =0for0 <i <1;,0 < j <ly. Multiple gap
costs are taken into account as followsis the cost of the first gapj is the cost of
the following gap. This type of gap cost is known as affine gap penalty and there exists
a different type of gap penalty called linear gap penalty wheres. For linear gap

penalties the above recurrence relations can be simplified to

H(i,j) =max{0,H(i,j — 1) —a,H(i — 1,j) —a, H(i — 1,5 — 1) + Sbt(S1;, 52;)}

for{l1 <i<l,1<j<ly.}
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H(i,0)=H(0,j)=0for {0 <i<1,,0<j<l.}

Each position of the matri¥ is a similarity value. The two segments®f andS2

producing this value can be determined by a back tracing procedure.

2.1.4 FASTA

FASTA [17] is a search algorithm developed by David J. Lipman and William R.
Pearson in 1985. The FASTA algorithm is a heuristic approximation to the Smith-
Waterman algorithm. The heuristics used by FASTA allows it to run much faster that
the Smith-Waterman algorithm but at the cost of some sensitivity. The first step in the
FASTA algorithm is to divide the query sequence into its constituent overlapping words
of length which is two for proteins or six for nucleic acids. Then as each sequence is
read from the database it is also divided into its constituent overlapping words. These
two list of words are compared to find the identical words in both sequences. Indeed
this comparison can be viewed as a set of dot plots, with the query as the vertical
sequence and the group of sequences to which the query is being compared as the
different horizontal sequences. An initial score is computed based on the number of
identities concentrated within small regions of the dot plot. If this initial score is high
enough, then a second score is computed by evaluating which of the initial identities
can be joined into a consistent alignment using only gaps of less than some maximum
length. Finally, if the secondary score is high enough then a Smith-Waterman alignment
is performed within the region of the dot plot defined by the concentrated identities
and this is the final score based on which matches are determined. Thus, significant
speedups observed in a FASTA search relative to a full Smith-Waterman search are due

to the prior restriction in alignment space.
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2.1.5 BLAST

The BLAST algorithm is used as the most popular search algorithm for searching
gueries against biological sequence datab&g6][ After being released by the Wash-
ington University at St. Louis, the BLAST algorithm has resided and further developed
by The National Center for Bioinformatics Information (NCBI) and is available at this
websitehttp://www.ncbi.nim.nih.gov/BLAST/. The approach used by the BLAST al-
gorithm is to first identify short segments with high-scoring alignments without gaps,
and then to extend each such local alignment as far as possible in both directions, with
or without gaps, so long as the score resulting after each new extension remains suf-
ficiently large. The method then evaluates the statistical significance of all such high-
scoring matches and reports as hits only those that satisfy a pre-selected threshold of
significance. More precisely, BLAST begins by dividing the input query sequence
into all possible contiguous sub-sequences (called “words”) of length w (called the
“word length”). The value of w depends on the type of sequence involved. For a given
database sequence, BLAST searches for sub-sequences that exactly match one of the
words. When such a match is found, the search process is suspended, and BLAST
tries to extend the sub-sequence match in both directions (possibly introducing gaps),
so long as the score for the extended match does not decrease significantly from the
score for the original word match. Ultimately, the extension process terminates either
when the end of one of the sequences is reached, or when the score has diminished
sufficiently. If the score at that point is high enough, then the extended match is tenta-
tively included in the hit list and the search for word matches resumes. When all word
matches have been processed for a given database sequence, that sequence is discarded,
and the algorithm starts on the next sequence in the database. At the end of the entire

process, BLAST reports the hit list along with various overall statistics. The results



16

obtained from a search of BLAST has various parameters which have very important

significance. The various parameters are

e Score :- Score or bit score is a value calculated from the number of gaps and
substitutions associated with each aligned sequence. The higher the score, the
more significant the alignment. Each score links to the corresponding pairwise

alignment between the query sequence and subject sequence

e E Value :- E Value (Expect Value) describes the likelihood that a sequence with
a similar score will occur in the database by chance. The smaller the E Value,
the more significant the alignment. For example, a E value of e-117 is a very low
E value meaning that a sequence with a similar score is very unlikely to occur

simply by chance.

e Strand :- Any DNA molecule that is double-stranded means genes may occur on
either strand. The two strands are the plus strand and the minus strand. The minus
strand is the reverse complement of the plus strand. If the similarity between the
guery sequence and the subject database is on the same strand, it is a given strand
value ofplus/plus If the minus strand of the query sequence is similar to the

database sequence, it is a giveplas/minus

Karlin-Altschul [37] statistics have been extrapolated to the task of assessing the
significance of hit scores obtained from comparisons of biological sequences in BLAST.
Moreover, the implementation of BLAST from NCBI can perform five different types
of similarity searches, corresponding to different combinations of sequence types in the
input queries and databas@sble 2.1shows the various available search types within

BLAST. All these are specified as a command line parameter when running BLAST.
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Table 2.1. Various search options in BLAST

Search| Query Database Translation
Name Type Type

blastn | Nucleotide| Nucleotide None

tblastn| Peptide | Nucleotide Database
blastx | Nucleotide| Peptide Query

blastp | Peptide Peptide None

tblastx | Nucleotide| Nucleotide| Query and Database

The BLAST algorithm is an improvement over the similar FASTA algorithm by
offering advantages such as speed, sensitivity, matches having an estimate of statistical

significance.

2.2 FPGAs and Reconfigurable Computing

2.2.1 Introduction to FPGA’s

A field programmable gate array (FPGA) is a general-purpose integrated circuit
that is programmed by the designer rather than the device manufacturer. Unlike an
application-specific integrated circuit (ASIC), which can perform a similar function in
an electronic system, an FPGA can be reprogrammed by downloading a configuration
program called &itstream even after it has been deployed into a system. Much like the
object code for a microprocessor, a bitstream is the product of compilation tools that
translate the high level abstractions produced by a designer into something equivalent
but low level and executable. Over the last three decades, FPGAs have grown from
simple logic components, through moderate prototyping platforms and more recently,
as complete System on a chip (SoC) components. One of the greatest advantages with
FPGASs is that they can be used as custom hardware avoiding the initial costs, fabrica-

tion costs and fabrication time.
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Figure 2.2. Virtex Family FPGA Logic slice

A simple FPGA fabric consists of an array of configurable logic blocks (CLBs)
attached by a programmable interconnect. Digital circuits are mapped to the CLBs
which consist of logic slices which consists of look-up tables (LUTs) and flip-flops
(FFs). Each logic slice as shown Kigure 2.2contains two 4-input lookup tables
(LUTSs), two configurable D-flip flops, multiplexers, dedicated carry logic, and gates
used for creating slice based multipliers. Each LUT can implement an arbitrary 4-input
Boolean function. Four inputs is a good size for a look-up table as suggested by various
studies, trading utility (complexity of a block) against utilization (what fraction ends up
in use) R, 3] [15). Coupled with dedicated logic for implementing fast carry circuits,
the LUTs can also be used to build fast adder/subtracters and multipliers of essentially
any word size. In addition to implementing Boolean functions, each LUT can also be
configured as a 16x1 bit RAM or as a shift register.

In addition to logic slices, current generation FPGAs include additional diffused
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Figure 2.3. An abstract view of a Field Programmable Gate Array (FPGA)

hardware resources beneficial for embedded systems. For example the Xilinx XC4FX140
which is a product of the latest 90 nm CMOS technology features various dedicated
digital signal processing 18-bits multipliers and accumulators which are called as DSP
slices, dual port BLOCK RAM’s which can be used for storing few kilobytes of data,
Digital Clock Managers, 2 Power-PC RISC Processors, 10/100/1000 Ethernet MAC
Blocks, and Rocket 10 Serial Transceivers which can be used to provide high-speed
connections for communication between FPGAs and inter-module communications.
Moreover with the advance of Moore’s Law, FPGA's are also increasing in total capac-
ity and speed which gives the users more number of computational units and is shown

in Figure 2.4[4].

2.2.2 Programming an FPGA

In current practice, hardware descriptive languages (HDL) and schematics are widely
used to implement applications on the FPGAgyure 2.5is a pictorial representation

of the design flow that usually occurs with FPGA's.
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Figure 2.4. FPGAs due to Moore’s Law

Several HDL languages like VHDL (Very High Speed Integrated Circuit Hardware
Description Language), Verilog, JHDL, SystemC, Streams - C, HandelC etc exist where
in the application can be specified and this stage is usually called the Design Entry
stage. After this stage, the design is verified for it's functionality through a Simulation
process. After the Simulation process the design is converted to a form of representation
called the netlist which is the complete representation of the logic in terms of basic gates
(AND,OR,XOR,NQT). After this process the design is mapped which is mapping the
above obtained netlist to the actual Configurable Logic Blocks (CLB) and Input/Output
Blocks (IOB) available in the device that has been targeted. After the design has been
mapped the next stage in the process is called Place and Route where in the design that
has been mapped is physically mapped to the device’s logic cells based on the timing
and layout requirements. After these steps, a timing simulation is performed and the

design is modified so that the best possible timing is obtained. After the re-design, the
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design is again sent through the process of converting the design into a netlist, MAP
and then Place and Route. After the final Place and Route the design is converted to
a configuration file called a BIT file which defines the behavior of the FPGA that has

been targeted. The BIT file obtained can be downloaded into the FPGA and verified for

functionality.

Design Verification
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Behavioral

Design Entry

Simulation

Synthesis 1

Functional
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Analysis
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l | Annotation } Simulation
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Figure 2.5. FPGA Design Flow

2.2.3 Hybrid CPU/FPGA Architecture’s

Hybrid CPU/FPGA architecture’s are the first of its kind from Xilinx,Inc which are
also called as Platform FPGA's which are the latest FPGA's with processors embed-
ded (Hard Cores) in the FPGA fabric apart from the vast number of freely available
logic gates. The processors inside the Platform FPGA's are IBM PowerPC 405’s which

implement the standard RISC style architecture and are based on the Core-Connect Ar-
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chitecture 7] from IBM and are implemented as Hard Cores inside the FPGA. This
level of integration allows various Intellectual Property (IP) cores to be attached to the
processor and the cores are also easily accessible through the Core Connect Architec-
ture that is provided as a Intellectual property core (Soft Core). The Core Connect
provides three bus standards as a means of communication between the PowerPC and
other cores. The three bus standards are Processor Local Bus (PLB) , On-Chip Periph-
eral Bus (OPB) and the Device Control Register (DCR) bus. The processor local bus
(PLB) is used to connect processor cores to the system main memory and other high-
speed devices. The OPB bus is dedicated for connecting slower on-chip peripheral
devices indirectly to the CPU. The OPB bus supports variable size data transfers and
as well as flexible arbitration protocols. Both the PLB and OPB buses have their own
bus arbiters, and the two buses are interconnected by at least one bridge (PLB20OPB
Bridge or OPB2PLB Bridge). Various intellectual Property (IP) Cores (Soft Cores)
are also available in order to interact with various standard peripherals in the FPGA
such as the DDR SDRAM (Double Data Rate - Synchronous Dynamic Random Ac-
cess Memory) , EEPROM ( Electrically Erasable Programmable Read-Only Memory),
PCI (Peripheral Component Interconnect), RS232 UART (Universal Asynchronous Re-
ceiver/Transmitter). In addition to the peripheral and utility Intellectual Property cores,
an interface called the Intellectual Property Interface (IPIF) is available in the form of

a soft core which allows any Intellectual Property (IP) Core to connect to either of the
buses. The IPIF is decomposed into two layers to allow easy migration of peripher-
als or IP cores to each of the different system buses in the Core Connect Architecture
. The first layer provides an interface facility to be used between the IP core and the
IPIF. The second layer is a bus specific portion, and interfaces the IPIF to one of the

buses. These interface modules allow to greatly accelerate the process of connecting
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pre-existent IP, or creating a new IP in a system. The IPIF provides two different types
of attachment to an IP core: a slave and a master attachment. With the master attach-
ment, user cores have the ability to initiate bus transactions. Moreover, bus arbitration
logic is also included within the master attachment. However it is the user core’s re-
sponsibility to re-arbitrate or abort the bus and switch the data bus between the slave

and master modes.

2.2.4 Reconfigurable Computing

Reconfigurable Computing (RC)J| [12] started of during the late 1960’s but was
still a research field until the late 1980’s because of lack of availability of suitable hard-
ware. But with the advent of Field Programmable Gate Array Technology (FPGA), the
field of reconfigurable computing got a boost since FPGA's provided a reconfigurable
platform and gave a broader meaning to the field. The main feature of Reconfigurable
Computing is the ability of the hardware to reconfigure based on various functions.
Although FPGA's provided a full reconfiguration of the chip since its ingression until
recently, due to increase in technology various FPGA's now even support partial recon-
figuration which means that a portion of the device can be altered even though when
the FPGA is actually running.

When Reconfigurable Computing was in its initial development stages, the cost of
FPGA hardware and Reconfigurable cards were very costly, but as years passed by and
with the advancement of Moore’s Law which gave more transistors per die, FPGA's and
Reconfigurable Computing boards have become a lot cheaper. Moreover the introduc-
tion of FPGA's with processors embedded in it became a stepping stone to the field of
Reconfigurable Computing. For example, today a Reconfigurable Computing Mother

board with a Xilinx Virtex Il Pro FPGA which houses around 100,000 free logic gates,
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two PowerPC processors and the ability to house a DDR SDRAM, a Compact Flash
Card and various other peripherals costs around $250 as compared to $6000 in the year
1998 which housed a Xilinx XC4085 FPGA with only 10,000 logic gates and with

minimal peripheral support.

2.3 Related Work

Since BLAST is an open source tool and many scientists and biologists favor it
for various research purposes, various groups in industry and academia tried to port
BLAST to different types of architectures in various ways.

Among the various implementations present, WU-BLAZP][is a copy-righted
implementation based on the BLAST algorithm developed by researchers at Washing-
ton University, St. Louis which provides more sensitive, selective and rapid similarity
searches of protein and nucleotide sequence databases by using extra command line
options than the original BLAST and vyields different results when compared to the
original BLAST from NCBI. Moreover, few scripts are provided in-order to automate
the process of converting people using BLAST from NCBI to use WU-BLAST.

Among other implementations from the academia world include BLAST4#, [
an implementation from the researchers at Nanyang Technology University where the
implementation has a capability of processing multiple queries with the same database.
In this implementation several individual queries are transformed as a single large vir-
tual query and a look-up table is built in order to compare the virtual query to the
database. The researchers also have developed a FPGA hardware implementation of
Smith - Waterman Algorithm39] [ 34] where in the dynamic programming part in the
algorithm has been mapped to Processing Elements (PE’s) which are implemented as

logic resources inside an FPGA.



25

On the industry side, initial attempts were made by Silicon Graphics,Inc (SGI)
to implement BLAST on SGI machines during the late 90’'s and was called as High
Throughput BLAST (HT-BLAST) 9]. In the implementation of High-Throughput
BLAST the parallelism inherent in the BLAST source using pthreads was replaced by
their own parallel constructs in-order to make it run faster on SGI machines. Later on,
efforts were made by TimeLogic which has two versions of BLAST namely GeneBLAST
[44] and Decypher BLAST43] which are extensions to the original BLAST Algorithm
which provide more statistical information than the original BLAST. However these
versions of BLAST are not compatible to run on all platforms and have been optimized
to run on a single platform called Decypher which have FPGA's and are available from
TimeLogic [42].

Few other efforts include an implementation called TurboBLAS8[I'Which is a
version of BLAST from TurboGenomics,Inc, a parallel implementation to run on net-
worked clusters of heterogeneous PC’s, workstations, and Macintosh computers. The
implementation co-ordinates multiple versions of unmodified BLAST running on var-
ious machines by using Turbohub which is a execution engine for Parallel and Dis-
tributed Java applications.

Apart from various copy righted implementations, research efforts were also made
in the Open Source community to implement BLAST on various different architec-
tures. An open source implementation of BLAST that is available is mpiBLAST [
which has been developed by researchers at the Lawrence Livermore National Labs
(LLNL) is based on Message Passing Interface (MP8) 20] [ 24] and was designed to
target cluster machines which have large number of high end processors. mpiBLAST
partitions the database among all the cluster nodes in-order to speed up the process of

execution by reducing the amount of disk 1/0 bandwidth. However the disadvantage
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it has is even though it has many processors running, it has no ability to partition the
query.

Apart from development in the research and industry community, efforts were also
made to come up with text books suchBIsAST[48] and Introduction to Bioinfor-
matics[29] from Oreilly Publishers. The textbooRLAST explains how exactly the
BLAST algorithm works and it also clearly explains how to get more results by defin-
ing the significance of various command line parameters that are available. The book
also specifies the significance of the statistics obtained by the BLAST algorithm and
various ways to interpret them. The textbolokroduction to Bioinformaticgjives a
brief description of the BLAST Algorithm and the way it works.

In this chapter, the related background information for the thesis statement made
in thechapter lhave been specified and also the work done by various other academic

and commercial institutions have been specified.
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Chapter 3

Design and Implementation

To establish the fact whether a scalable and cost-effective reconfigurable imple-
mentation of BLAST is feasible or not, a prototype was designed, implemented and
analyzed. To figure out the computational intensive part in the BLAST software tool,
experiments were setup by enabling one of the standard Unix profiling options. Af-
ter determining the most computationally intensive sub-routine in the BLAST soft-
ware tool, the software was finely profiled in order to determine the lines of code that
were most computationally intensive inside the sub-routine. Moreover to prove that
the above determined lines of code were the most time consuming segments in the
software, the same test was repeated on various machines with different architectures,
memory and network interfaces. After performing the initial set of profiling experi-
ments, BLAST was cross compiled for the appropriate PowerPC architecture in the
target hardware using a cross compiler developed. The same profiling tests were also
conducted on the target hardware after developing a base system. After porting BLAST
to the PowerPC processor, hardware was designed as an Intellectual Property (IP) core
to replace the most computational intensive part of the BLAST software as a Master -

Slave peripheral which could be attached to the On - Chip Peripheral (OPB) Bus. The
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hardware developed was tested for functionality using a standalone system. After the
initial test with a standalone system, a Linux character device driver was developed in
order to test the hardware design developed in a complete Linux based system environ-
ment. After testing the hardware design, appropriate changes were made to the BLAST
source code to invoke the new hardware designed. After the initial round of tests, in
order to take advantage of the on chip memory available in the FPGA, the hardware
design was changed to obtain speed up by saving clock cycles by having a lookup to a
BRAM instead of external memory. After the various tests on the development board
for both the hardware designs developed, the scalability issue in relation to portability
and cost effectiveness was addressed. Since the FPGA was abundant in resources and
only 50% of the FPGA was occupied for the initial systems developed, the cores devel-
oped were replicated and subsequent changes were made to the hardware and software

to take advantage of the numerous cores present in the system.

3.1 Partitioning

3.1.1 The Target : Xilinx ML - 310

The target hardware selected for experiments is a development board from Xilinx
which hosts a Virtex Il - Pro XC2VP30 FPGA which is an embedded platform for ac-
celerated system development. In addition to more than 30,000 logic cells, over 2,400
Kb of BRAM, and dual PPC405 processors available in the FPGA, the ML310 pro-
vides on-board Ethernet MAC/PHY, DDR memory, multiple PCI slots, and standard
PC I/0O ports within an ATX form factor board. An integrated System ACE CF con-
troller is deployed to perform board bring-up and to load applications from the included
Compact-Flash card and the complete system is showigure 3.1

The Virtex Il - Pro FPGA from Xilinx,Inc is a platform FPGA and has two embed-
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Figure 3.1. Xilinx ML - 310 Board Diagram
Source : http://lwww.xilinx.com/products/boards/ml310/current/index.html

ded PowerPC 405 processors in it. Apart from the PowerPC processors it also has full
duplex serial transceivers which can provide speeds ranging from 622 Mbps to 3.125
Gbps. Virtex Il - Pro FPGA's are built on a 130nm, using a 9 layer copper process
technology and it has about 30000 logic cells available which can be programmed to
implement any logic of the user’s choice. They are indeed good supplements for vari-
ous existing embedded systems because of their higher performance and lower power
consumption. Figure 3.2is an internal block diagram of the Virtex Il - Pro FPGA.

The PowerPC processors are based on the Harvard Architecture and support the Core-
Connect Bus Architecture from IBM2[7] and also are capable of running the Linux
operating system and thereby a Linux kernel 2.4.26 from Montavépvith PCI
support was ported on to the PowerPC processor inside the FPGA. The Virtex - Il Pro

FPGA also has support for various commonly used devices like the IDE and USB ports
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through the PCI Bus and ALi South Bridge. Apart from running the standard periph-
erals, user-defined cores can also be run on the Xilinx Virtex - Il Pro FPGA and be
accessed from the PowerPC processor. The user-defined core to be accessed by the
PowerPC processor in the FPGA should be attached to either the Processor Local Bus
(PLB) or the On-Chip Peripheral Bus (OPB) buses available in the FPGA. In order to
generate such a system, a software called Embedded Development Kit (EDK) or Xilinx

Platform Studio (XPS)40] from Xilinx is usually used.
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Figure 3.2. Xilinx ML - 310 Block Internal Block Diagram
Source : http://www.xilinx.com/products/boards/mi310/current/index.html

3.1.2 Profiling BLAST

The first step in order to answer the central question of the work is to find the most
computationally intensive segment in BLAST. For this purpose, BLAST software was

profiled and indeed finely profiled in order to determine the most computationally in-
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tensive part in the software. In order to do this, BLAST source code was downloaded
from the NCBI ftp siteftp.ncbi.nlm.nih.gov, both the source code and the BLAST ex-
ecutables are available for download from this web site. The various flavors of BLAST

available which can be catered according to user requests are :-
e blastn - Compares nucleotide queries against nucleotide sequences
e blastp - Compares protein queries against protein sequences
e blastx - Compares translated queries against protein databases
¢ tblastn - Compares protein queries against translated databases
e tblastx - Compares translated queries against translated databases

The NCBI 2.2.6 version which is the latest version of BLAST source code consists of
about 1500 source files spread out in about 15 directories approximately. After unzip-
ping the source obtained, all the profiling tests were run on an Intel Based Machine
in spite the final target being a PowerPC Machine. The Intel machine used for initial
profiling was running RedHat Enterprise Linux version 3.0. The Unix profiling tool
gprof was used in order to determine the profiling information.

To run the BLAST program, the software needs three arguments to be given :-
1. The flavor of BLAST program to execute (e.g : blastp, blastn)

2. A database which is a large collection of known genetic sequences

3. A query which is a generally a short sequence of which is unknown

As explained above, BLAST code base supports various flavors or various programs.
Among the various programs available from the BLAST source cbtstn which

compares nucleotide queries against nucleotide database of sequences was selected to
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do the initial profiling. A sample query sequence of size 560Kb was selected to per-
form the initial profiling tests. While BLAST has the ability to create local BLAST
databases from any FASTA formatted protein or nucleotide sequences, one of the NCBI
databases was downloaded for profiling. Several database files can be downloaded from
the BLAST database FTP directory availablépt/ftp.ncbi.nih.gov/blast/db/. A rel-

atively small database file called ecoli.nt.Z which represents the bacterium Escherichia
coli and around 1.3 MB in size was downloaded for initial tests from the above men-
tioned website. This is a FASTA formatted file of nucleotide sequences which is also
compressed. Once uncompressed the database was formatted usimgéidb pro-

gram which comes with the BLAST software on download using the following the steps

e formatdb -i ecoli.nt-pF-0T

After formatting the database, the following steps were followed in order to enable

profiling :-

e The compiling option-pg’ was added as one of the optionsgoc’ in the top

level Makefile

e After enabling the option specified above, the BLAST software is compiled to

obtain the binaries.

e The binaryblastall was run with the following options

blastall -p blastn -i my_query -d ecoli.nt -o results
e Running the BLAST software produces a file caltgdon.out

e The profiling toolgprof is now run on the binarplastall in order to obtain the

profiling results.
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As the source code is not modified and since the total computation is run in soft-
ware or on the general purpose processor available, hence this run is aptly named as
Software-BLAST or SW-BLAST.

Table 3.1represents the initial profiling results obtained for SW-BLAST. Based
on the statistics obtained from the initial profiling as showale 3.1 the function
calledBlastNtWordFinder was determined to be the most computationally intensive

segment in the BLAST software.

Table 3.1. Profiling BLAST

% cumulative| self self | total

time seconds | seconds calls | s/call | s/call name

85.71 0.42 0.42 1170 | 0.36 | 0.36 BlastNtWordFinder
4.08 0.44 0.44 16 1.25 | 1.57 | readdhgetsequence
2.04 0.45 0.01 | 41795| 0.00 | 0.00 BlastNtWordExtend
2.04 0.46 0.01 | 1202 | 0.01 | 0.01 | readdhget sequenceex
2.04 0.47 0.01 34 0.29 | 0.29 ALIGN _EX
2.04 0.48 0.01 24 0.42 | 0.42 RebuildDNA 4na
2.04 0.49 0.01 1 10.00| 10.00 mb_makemod.It
0.00 0.49 0.00 7610 | 0.00 | 0.00 NIm_SwitchUint4
0.00 0.49 0.00 7425 | 0.00 | 0.00 NIm_StringCmp
0.00 0.49 0.00 6766 | 0.00 | 0.00 AsnFindBaseType
0.00 0.49 0.00 6230 | 0.00 | 0.00 AsnDeBinDecr
0.00 0.49 0.00 5826 | 0.00 | 0.00 s_MemAllocator
0.00 0.49 0.00 5196 | 0.00 | 0.00 NIm_MemFree
0.00 0.49 0.00 5163 | 0.00 | 0.00 AsnDeBinScanTag
0.00 0.49 0.00 4679 | 0.00 | 0.00 NIm_MemGet
0.00 0.49 0.00 4085 | 0.00 | 0.00 SegPortGetResidue
0.00 0.49 0.00 3802 | 0.00 | 0.00 AsnFindBaselsa
0.00 0.49 0.00 3733 | 0.00 | 0.00 ObjMgrGet
0.00 0.49 0.00 3493 | 0.00 | 0.00 BlastHitListPurge
0.00 0.49 0.00 2918 | 0.00 | 0.00 NImRWunlockEx
0.00 0.49 0.00 2869 | 0.00 | 0.00 NIm_StringMove
0.00 0.49 0.00 2506 | 0.00 | 0.00 NImTIsGetValue
0.00 0.49 0.00 2426 | 0.00 | 0.00 AddXMLname
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnBinReadld
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnBinReadVal
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnReadld
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These profiling tests were also run on various other databases and sequences to
establish the fact that this behavior found is universal for all the queries and databases
and not just the sequence and database taken into consideration for initial testing. After
obtaining the profiling results, the results were also compared to the work dod in [
in order to check for consistency of the results obtained. BlastNtWordFinder
was further analyzed and about 30 lines of code were separated which were found to
be the most critical part inside the functi@mkastNtWordFinder and were named as
critical _codeand further profiling established the fact these 30 lines of code were the
most computationally intensive segmeiifible 3.2gives the profile information after
changes to the BLAST source code.

Apart from running the test on just the test machine specified above the version of
SW-BLAST software was indeed profiled on various high end machines and low end
machines from different vendors and board level architectures. Sample configuration

of the machines chosen to use were :-
e Dual Intel Xeon 32 bit Processors running at 2.8Ghz with 2GB of RAM
e Quad Intel Xeon 64 bit Processors running at 3.2GHz with 4GB of RAM
e Dual Intel Pentium Ill 32-bit Processors running at 1.2GHz with 1GB of RAM

e Dual Intel Pentium Ill 32-bit Processors running at 550MHz with 512MB of
RAM

e AMD Athlon 32-bit Processor running at 1000MHz with 1GB of RAM

After running the same test on all the machines specified atxitveal _codewas de-
termined to be the most computationally intensive segment in the BLAST software and

roughly amounted to about 80% of the computation time. Further more analysis was
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Table 3.2. Profiling BLAST with critical code

% | cumulative| self self | total

time seconds | seconds calls | s/call | s/call name

82.94 0.42 0.42 1170 | 0.36 | 0.36 critical_code
4.08 0.44 0.44 16 1.25 | 1.57 | readdhgetsequence
3.28 0.42 0.42 1170 | 0.36 | 0.36 BlastNtWordFinder
2.04 0.45 0.01 | 41795| 0.00 | 0.00 BlastNtWordExtend
2.04 0.46 0.01 | 1202 | 0.01 | 0.01 | readdhget sequenceex
2.04 0.47 0.01 34 0.29 | 0.29 ALIGN _EX
2.04 0.48 0.01 24 0.42 | 0.42 RebuildDNA 4na
2.04 0.49 0.01 1 10.00| 10.00 mb_makemod.It
0.00 0.49 0.00 7610 | 0.00 | 0.00 NIm_SwitchUint4
0.00 0.49 0.00 7425 | 0.00 | 0.00 NIm_StringCmp
0.00 0.49 0.00 6766 | 0.00 | 0.00 AsnFindBaseType
0.00 0.49 0.00 6230 | 0.00 | 0.00 AsnDeBinDecr
0.00 0.49 0.00 5826 | 0.00 | 0.00 s_MemAllocator
0.00 0.49 0.00 5196 | 0.00 | 0.00 NIm_MemFree
0.00 0.49 0.00 | 5163 | 0.00 | 0.00 AsnDeBinScanTag
0.00 0.49 0.00 4679 | 0.00 | 0.00 NIm_MemGet
0.00 0.49 0.00 4085 | 0.00 | 0.00 SegPortGetResidue
0.00 0.49 0.00 3802 | 0.00 | 0.00 AsnFindBaselsa
0.00 0.49 0.00 3733 | 0.00 | 0.00 ObjMgrGet
0.00 0.49 0.00 3493 | 0.00 | 0.00 BlastHitListPurge
0.00 0.49 0.00 2918 | 0.00 | 0.00 NImRWunlockEx
0.00 0.49 0.00 2869 | 0.00 | 0.00 NIm_StringMove
0.00 0.49 0.00 2506 | 0.00 | 0.00 NImTIsGetValue
0.00 0.49 0.00 2426 | 0.00 | 0.00 AddXMLnhame
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnBinReadld
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnBinReadVal
0.00 0.49 0.00 2204 | 0.00 | 0.00 AsnReadld
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performed by obtaining databases and queries from Future Systems Group which is
a group that specializes in bioinformatics at Oak Ridge National Labs (ORNL), Ten-
nessee, Knoxville. The databases obtained were being used as a set of benchmarks by
the group at ORNL in order to determine few characteristics by the biologists about the
BLAST software. The analysis was done in order to determine whether BLAST was
compute bound or I/O bound. A set of 20 queries and two databases were compared
against each other to analyze the results using a Perl scriptatsid 3.3shows the

results obtained. As shown ifable 3.3even though Moore’s Law gives double the
number of transistors every 18 months, the amount of time taken to run the BLAST
software doesn’t increase linearly either with the database residing on the local drives

or mounted through Network File System (NFS).

Table 3.3. Profiling BLAST on various High-end and Low-end machines

500MHz | 1000MHz | 2400MHz | 3200MHz
Mount type
NFS 152m 48m 77m 17m
local drive | 125m 39m 27m 13m

(N/Ain the above table indicates that the tests described could not be run on the particu-
lar machine because of the intensity of the databases and low capability of the machine)

This tests were a strong motivation that substantial speedups can be obtained by
accelerating theritical _code section inside th&lastNtWordFinder function in the

BLAST software using Reconfigurable Computing.

3.1.3 Base System Platform

One of the strong reasons that the ML-310 development board from Xilinx was
chosen as the target hardware is because it had PowerPC processors which could run the

ordinary BLAST software and the most computationally intensive part in the BLAST
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software can be transformed as a user core and could be run on the FPGA slices. In
order to run any experiments on the target hardware specifisdbsection 3.1,1a

Base System Platform as shownhkigure 3.3has to be built and Xilinx Embedded
Development Kit software was used to generate a Base System Platform which (BSP)

consisted of

e PowerPC Processor

Block-RAM to store the instructions and data for the processor

DDR-RAM core on the PLB bus

PCI Core on the OPB Bus

PCI Bridge Core on the OPB Bus

Serial Port Core on the OPB Bus

Compact Flash core on the OPB Bus

Apart from the standard peripheral cores, even user-cores can be added to the Base
System Platform. Few other essential elements were also added to system which in-

clude :-

e Linux kernel (2.4.26) to run on the PowerPC processor
e Linux Device Drivers for the IP cores

e An IDE Hard drive connected to the PCI bus through Ali South Bridge

The following procedure is used in order to generate a Base System Platform :-
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Initially the Base System Wizardn the Xilinx Embedded Development Kit soft-
ware is invoked in order to create a base system with standard peripheral compo-

nents.

After selecting all the standard peripherals mentioned above, an option by name
Create / Import Peripheral Wizard in Xilinx Embedded Development Kit can

be used to generate a user-core as a Master - Slave interface with an Intercon-
nect Peripheral Interface (IPIF). The Interconnect Peripheral Interface bridges

the user-core with one of the buses that the core is attached to.

The files obtained from the above step are modified according to the user require-

ments.

After modifications, the user-core is stimulated using Mentor Grapgi$jod-
elsim Tool [31] along with Xilinx’s Bus Functional Model in order to establish

the correct functionality of the core.

The user core is then added to one of the Buses available in the FPGA and syn-
thesized to a bit-stream along with the Base system generated using the Xilinx

ISE Design Tool Suite and Embedded Development Kit.

The base system used can be either a standalone system or else a system which
has the ability to run the Linux Kernel by changing an optiosoftware Plat-

form Settings

— In case the system built is a standalone system, then the bit-stream generated
is combined with an elf file which is a binary for a C program that runs on
the PowerPC processor in order to test the user-core to generate a new bit-

stream which can be downloaded using the JTAG interface using a Parallel
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Cable.

— In case the system built is a Linux based system, the bit-stream generated is
combined with the Linux kernel to create an AceFile which can be loaded

onto one of the partitions in the Compact Flash.

— After booting up in Linux, then a Linux Device driver is used as a loadable

module in order to test the user-core.

Blast

OPB (32 bits/100 MHz)

PLB (64 bits/100 MHz)

D

PPC405 PPC405

Figure 3.3. ML-310 Base System Platform

3.2 BLAST Intellectual Property (IP) Core

3.2.1 Implementation Overview

Initially after building the base system, a bit file was generated by the Xilinx Tool

set and by combining the bit-file with a Linux Kernel cross compiled for PowerPC,
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an ace-file was generated. The ace-file was loaded onto the Compact Flash card in
the ML - 310 Development board and the BLAST source was cross compiled to the
PowerPC Architecture and was run on the ML-310 development board to check for
compatibility of the BLAST software. After an initial run, the profiling was enabled
for the cross compiled version of BLAST and profiling results obtained were checked
for consistency. After these phase of tests, it was determined to build the hardware for
the most computationally intensive part.

In order to implement the BLAST core in the FPGA, tbetical _code function
which was determined as the most computationally intensive segment in the BLAST
software from the profiling results isubsection 3.1.%vas analyzed and its function-
ality was determined. The detailed functionality of the function is as follows: All the
databases available consist of sequences and sequences are further sub-divided into
sub-sequences and all the sub-sequences usdasiNt\WordFinder to determine the
hit information. Inside th@&lastNtWordFinder function, the hit information for all the
sub-sequences is determined using a lookup linked list which is built using the query
sequence when the BLAST software is invoked using the query. So, words of 16 bits or
8 characters are formed from the subject sequence by traversing it in four letter hops.
If the count of occurrences of the word in the query sequence is zero, the current word
does not occur in the query and is discarded. If the count is non zero then each off-
set is retrieved from the linked list. For each offset in the query sequence the subject
and query words are extended to the left and right. If the comparison routine gener-
ates a high score, then the subject and the query words, as well as their offsets, are
passed to another routine called BlastNtWordExtend where further search is per-
formed. The task of indexing the newly created words from the subject sequence into

the lookup linked list and retrieving the query offsets of these words is implemented in
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the newcritical _codefunction.

Since the functionality ofritical codefunction was determined, an equivalent dig-
ital design was made in order to replace tingical _codefunction. The digital circuit
design was implemented using VHDL (Very High Speed Integrated Circuits Hardware
Descriptive Language) as an Intellectual Property (IP) core and is shokigune 3.4
in a top level view and is explained in detail subsection 3.2.2The circuit design
was made in order to be portable and scalable to various different architectures, so that
this particular implementation could be ported to many architectures like the Cray XD
-1 [14] [1], SRC - 7 B5] or development boards with Xilinx Virtex 4 Multi-Platform
FPGA's [19] without much redesign. Apart from replacing tbetical _codefunction,
the lookup linked list which the functioaritical _codeuses to determine the lookup’s
as described above was converted to a lookup table which would ease the hardware
design in order to do the lookup’s and the structure of the table is explained in detalil
in subsection 3.2.3In the present hardware design implemented, the BLAST appli-
cation is first started by invoking thgastall command on the PowerPC processor in
the ML-310 Development board. As the execution reachestilieal codefunction,
a Linux character device driver initializes the BLAST user peripheral core in the hard-
ware using thepensystem call. After performing the initializations, the virtual address
of the BLAST hardware core is determined by usiogemapfunction call by giving
the physical address of the hardware core. By using the patch for the BLAST source
code, the lookup table is built using the query sequence and the lookup table is loaded
onto to the DDR-RAM which is attached to the Peripheral Local Bus througtviite
system call. After loading the lookup-table into the DDR-RAM, each subsection of the
subject sequence is transferred to the BLAST hardware core on the FPGA by using the

write call where in the core identifies all the basic eight letter or 16 bit hits between this
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subsection and the query sequence. After the transfer the character device driver on the
other hand waits for hit information to be obtained back from the FPGA and uses the
read system call to perform the operation. And this operation is continued until all the
sequences in the sequence database have been processed. After receiving the control
back from the FPGA, the remaining part of software execution is again resumed on
the PowerPC processor. The character device driver was carefully designed in such a
way that the hardware core never stalls waiting for data from the processor and also
an efficient polling scheme was chosen to implement the character device driver. Since
this run has both hardware and software involved, it is called as Hardware-BLAST or
RC-BLAST which includes the modified BLAST source code as an Open Source patch
where the computationally intensive segment of the sequence matching code is moved

onto the FPGA hardware, the hardware user core and the Linux character device driver.

3.2.2 Hardware Implementation

The BLAST hardware core design as shownFigure 3.4is a master-slave pe-
ripheral connected through an Intellectual Property Interface (IPIF) to the On-Chip
peripheral Bus (OPB) . The PowerPC processor and the core communicate with an
OPB2PLB Bridge and a PLB20OPB Bridge. The master-slave design consists of two
BLOCK RAM'’s of size 1024 X 32 bits which act as Input and Output FIFO’s in the
slave design. It also has registers to monitor the read and write counts for the two
FIFO’s by the character device driver. The BLOCK RAM’s were chosen to act as
FIFO’s because they are built in to the FPGA and provide faster access to the data and
do not use any of the Configurable Logic Blocks (CLB’s) available in the FPGA. And
also the concept of FIFO can be translated to any other architecture with very minimal

design modifications. Initially, when the point of execution reachestitieal code
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function, the device driver fills in the sub-sequences into the Input FIFO and writes the
write count to the Input FIFO read count register. Upon seeing a value greater than the
Input FIFO’s write count which is initially zero the Slave start Machine starts execution.
The slave state machine reads in data from the Input FIFO by invoking the BRAM state
machine which is shown iigure 3.7and then passes it to the master state machine.
The job of the master state machine is to do a lookup to the lookup-table in the DDR-
RAM and then write back the data obtained from the lookup back to the slave and is
shown inFigure 3.6 The slave state machine reads back the hit information and writes
back the appropriate hit information and offset information to the Output FIFO using
the BRAM State Machine. The character device driver reads in the values from the
Output FIFO and the above mentioned process continues until all the subject sequences
in the sequence database are processed. The complete flow of the slave state machine

is shown inFigure 3.5

From Slaye To Slave
Lookup Addresxl/ Lookup Data

n h)sﬁes

1

BUS/REQ
ReadData ReadData2
ReadDataWait2
ReadDataWait

@ ReadDone2

Figure 3.6. Hardware BLAST Master state machine
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From S:Eve State Machine

BRAMREAD REQUEST BRAM WRITE REQUEST

ReadRequest Write Request

WriteRequestDone

ReadWait

Figure 3.7. Xilinx Block RAM State Machine

3.2.3 Lookup Table

The lookup table is one of the most critical elements in the hardware design of the
BLAST Algorithm and is translated from a linked list to a table. The lookup table is
generated by the software and is loaded onto the DDR-RAM. It is based on the lookup
table that the number of hits is determined and moreover it is also very easy to port
the lookup table to any FPGA development board or a FPGA based system since it just
takes 512KB of memory. In the format of the lookup table, the first column of each
row in the lookup table is a word, which determines if the hits are greater than 3 or not
and is constructed from consecutive 8 characters in the query sequence. The second
column for each row has a 2 bit count which indicates the number of hits that particular
word has and the rest of the columns have the offsets of each appearance of the word
in the query sequence. Since there are 8 characters or 16 bits in each row, by applying
the maximum number of combinations, the lookup table is 2 power 16 rows in length.

The lookup table configuration is shownhkigure 3.8 However in the present version
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of the hardware design made, the hardware cannot handle the situation if the hits are

greater than 3.

3 13 16 16 16

PO‘E[TQERaFOR Query Offset for Hitl Query Offset for Hitl Query Offset for Hitl

flag

(1bit) #HITS (2 bits)

3

flag bit = 0 if #hits <=3
else flag bit =1

Figure 3.8. Hardware BLAST Lookup table

3.3 Enhancements to BLAST Hardware

3.3.1 On-Chip Caching of Partial Look-up

Taking advantage of On-Chip memory instead of using external memory by going
off-chip is always considered to be a good design decision in the field of Hardware
Design. So in order to achieve this particular advantage, the on-chip BRAM’s can
be utilized in order to achieve performance. In the design described in the previous
sections, the lookup to the external memory is made to all the subsequences of the
subject sequence, and the number of hits is partly determined by the first bit in the

lookup table. So if the first bit in the lookup table can be cached to the on-chip BRAM's,
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the decision whether to access the external memory can be made based on the bit in the
BRAM which would save a large number of clock cycles and improve performance.
As per the original slave state machine as showRigure 3.5the state BUSREQ1

is the state where the slave hands-off control to the Master in order to determine the
lookup. This particular state has been replaced by a lookup to a BRAM and so based
on the content of the BRAM, the decision whether to access the external memory or
not is made and the corresponding state machine is showrFigume 3.9 This design
decision has both its inherent advantages and also disadvantages. The advantages it has
is, it saves a couple of clock cycles by not allowing to access to the external memory

if the value that has been looked up i&la. However in case the lookup value in the
BRAM's is a’0’ then it adds additional 2 cycle delay of accessing the BRAM before

accessing the external memory.

|BLAST | |BLAST | |BLAST | |BLAST |

PLB20OPB OPB2PLB
Bridge Bridge

PPC 405 PPC 405

Figure 3.10. Scalable Design
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3.3.2 Scalable Design

This section discusses about the scalable design implementation in order to optimize
the resources available in the hardware. The reasons for implementing the scalable

design are:
e Speed
e Cost
e Power
e Moore’s law

As the database sizes are exponentially increasing and as shown cle@dyria 1.2

they no longer fit in the main memory and an access to the disk has to be made in order
to access the database which indeed rapidly decreases the program’s speed of execution
because of the lesser disk 1/0 bandwidth when compared to processor speed. However
major bioinformatics labs whose main concern is the job turn-around time deploy large
clusters which cost millions of dollars, but small bioinformatics labs who cannot afford
such big clusters, settle down with ordinary machines. So cost is a major factor which
hinders the progress of various biologists in small bioinformatics labs. So one of the
goals that the thesis addresses is the fact that even though the approach and the design
may not be compared with the speed of running BLAST on a million dollar machine,

but if it can give substantial results which can be compared to a million dollar machine,
then the approach can be suggested to biologists in small bioinformatics labs. So since
Moore’s law gives us double the number of transistors every 18 months, for FPGAS it is
more number of Configurable Logic Block’s which the user can use as computational

units. And after the design of a single BLAST core unit on a ML-310 development
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board, the BLAST hardware core occupies just 4% of the XC2VP30 FPGA which is
approximately 800 slices and draws just 15mW of power. About 50% of the chip is
occupied by the base system to run the Linux kernel on the FPGA, so the remaining
slices in the FPGA can be utilized to fit in more units and can be made to run in parallel
while drawing just few Milli watts of power which is very less when compared to
adding desktop processors to run more BLAST match units giving speedup at no cost
and is shown irFigure 3.10 The same procedure was also adapted to incorporate more
BLAST units with support for on-chip caching of partial lookup and all the statistics

are explained in detail inhapter 4

4rcs=

S~
NtWordFinder

Xmro—--4rc=z=mo
xmr o-—

Figure 3.11. Scalable Design for reducing Latency

3.3.2.1 Latency and Throughput

As described previously that, BLAST is more 1/0O bound, the design can be further
extended in order to reduce the latency and increase the throughput and by changing
few design decisions in software, the hardware can be optimized for either of the char-

acteristics. A scalable design will be more efficient if the available bandwidths are uti-
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lized to their maximum extent. As mentioneddhapter Zearlier any subject sequence
database consists of many independent sections of subject sequences. Blast application
performs a match operation between one section of subject sequence and the query and
generates the match results. After generating results with the first section, it performs
the match operation between the query sequence and the second section of the subject
sequence and so on. At any instant a Blast match unit in hardware performs the match
operation between one section of subject sequence and the query sequence. By hav-
ing multiple Blast match units instantiated in the FPGA hardware, match operations
between multiple sections of the subject sequence and the query sequence can be per-

formed in parallel. This scalable model utilizes all the bandwidth and space available

to its maximum extent to increase the performance of the Blast application.

DDR-RAM

8
g
Xmr v — -4 rcaImo
77

Figure 3.12. Scalable Design for increasing throughput

TheFigure 3.11shows one implementation of the scalable design where in the la-
tency of the BLAST algorithm can be reduced. THgure 3.11shows a case in which
two Blast match units are instantiated into the FPGA hardware. Along with the match
units, a demultiplexer and a multiplexer are also added to the design in the software
in order to partition the subject database into subsequences and feed the hardware in

order to produce correct results. The different sub-sequences of the subject sequence in
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the input stream are demultiplexed properly so that each sub-sequence is fed to a dif-
ferent match unit in the hardware. The output hit information produced by each match
unit is multiplexed onto a single output stream and execution of the rest of the BLAST
Algorithm continues. The DDR Controller on the PLB Bus arbitrates the address re-
guests targeted to DDR-RAM and are arbitrated by writing different base address to
do the lookup’s to different blast match units and retransmit the data returned from

DDR-RAM to the correct match unit.
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Figure 3.13. Scalable Design

This scalable design model with few modifications can also be used to increase the
throughput of the BLAST Algorithm also by performing the match operation between
the same subject sequence database and multiple query sequences at the same time.
Figure 3.12shows the design in order to achieve high throughput. The figure shows
two Blast match units instantiated in the FPGA hardware. Each Blast match unit in
this design generates hit information between the same section of the same subject se-
guence and different query sequences. The multiplexer in software multiplexes the hit

information from different match units. However, the number of different query se-
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guences is limited by the number of query lookup tables that can be put in the available
DDR-RAM or the amount of resources in the FPGA.

Combining the above two scalable designs described which can reduce the latency
and increase the throughput, a generalized design decision was made in order to com-
bine both the designs into a single design of the BLAST Algorithm. The model shown
in Figure 3.13is a generalized model with x m match units performing match op-
erations between n different subject sequences and m different query sequences. The
maximum scalability of this design is mainly limited by the number of resources avail-
able in the FPGA and the number of lookup tables that the DDR RAM can hold.

In this chapter, all the work performed in order to answer the thesis question made

in chapter lare explained with designs.
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Chapter 4

Analysis

In order to answer the thesis question madehapter 1a number of experiments
were performed and analysis was done as part of the results obtained from the exper-
iments. In the chapter, the emphasis is made on the term cost-effectiveness, since the
term cost-effectiveness one of the major aspects of the thesis statement. The term
cost-effectiveness implicitly means how effective is the design in terms of cost in com-
parison to the cost of a typical desktop processor or cost per node of a large cluster.
The chapter analyzes all the results obtained in terms of cost-effectiveness with regard
to scalability, performance and portability which are it’s indirect contributors.

Initially a standalone system was built with a single RC-BLAST core. After veri-
fying for functionality in a standalone system, the core was added to the base system
which had the ability to run a Linux kernel with the additional cores specifiexdhap-
ter 3and all the results described in the sections below are as result of this complete

system.
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4.1 Scalability

Scalability is the ability to increase units and continue to effectively increase the
performance. With respect to FPGA's, scalability depends on the amount of logic slices
the core consumes and the amount of performance obtained out of it. In terms of RC-
BLAST, since the Intellectual property (IP) core for RC-BLAST implemented in the
FPGA takes only 4% of the amount of logic resources available, RC-BLAST IP cores
could be replicated in order to fill up the additional resources available. So thereby
a platform FPGA is giving the ability to incorporate more cores at no extra cost. So
thereby the ternscalableis considered as an indirect contributor to the terost-
effectiveness As it can be seem frorfiable 4.1 the FPGA XC2VP30 that has been
chosen to implement RC-BLAST reaches a slice usage of 95% with 8 RC-BLAST
cores. The same procedure was also adapted to build a system with the RC-BLAST
core with support for On-Chip Caching of the Partial Look-up. The resource usage
for the system with support for On-Chip caching of Partial Look-up is showFamn
ble 4.2 TheTable 4.2clearly shows that the FPGA XC2VP30 runs out of resources
with regards to the amount of Block RAM’s consumed in regard to the core design for
On-Chip Caching of Partial Look-ugFigure 4.1shows the amount of resources that
one core of RC-BLAST consumes in the XC2VP30 FPGA &iglre 4.2shows the
amount of resources that one RC-BLAST core with support for On-Chip caching of
Partial Look-up consumes. So having the ability to instantiate more cores in the sys-
tem thereby means that all the cores instantiated could run in parallel thus providing

significant speed up at no extra cost.
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Table 4.1. Statistics for the system with various number of cores of RC-

BLAST

Number| Slices| % of slices| BRAM’s | % of BRAM’s Power
Of consumed consumed | Consumption (MW
Cores

One | 7349 53% 36 25% 2338.81
Two 8150 59% 40 29% 2351.45
Four | 9752 71% 48 36% 2363.27
Eight | 13119 95% 56 41% 2376.63

Table 4.2. Statistics for the system with various number of cores of RC-
BLAST with support for on chip caching of partial look-up

Number| Slices| % of slices| BRAM’s | % of BRAM'’s Power

Of consumed consumed | Consumption(mwW
Cores

One 7700 56% 68 50% 2353.94
Two 8816 64% 104 76% 2366.44

Logic Utilization:

Number of Slice Flip Flops: 907 out of 27,392 3.2%

Number of 4 input LUTSs: 996 out of 27,392 3.5%
Logic Distribution:

Number of occupied Slices: 801 out of 13,696 5.8%
Total Number 4 input LUTSs: 1104 out of 27,392 8.0%

Number used as logic: 996

Number used as a route-thru: 111

Number of Block RAMSs: 4 out of 136 2.9%

Figure 4.1. Amount of Logic resources used for one RC-BLAST core
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Logic Utilization:
Number of Slice Flip Flops:
Number of 4 input LUTSs:

Logic Distribution:

1049 out of 27,392 3.8%
1568 out of 27,392 5.7%

Number of occupied Slices: 1116 out of 13,696 8.14%
Total Number 4 input LUTSs: 1679 out of 27,392 6.1%

Number used as logic: 1568

Number used as a route-thru: 111

Number of Block RAMs: 36 out of 136 26.4%

Figure 4.2. Amount of Logic resources used for one RC-BLAST core with
On-Chip caching of Partial Look-up

4.2 Power

One of the major issues also that the thesis addresses is amount of power consump-
tion that the design implemented takes since power, static and dynamic, have become
a major issue for building large parallel systemi@ble 4.1and Table 4.2also show
the amount of power that the system dissipates with the addition of various humber
of RC-BLAST cores. FronTable 4.3and Table 4.4that show the amount of power
consumption for one core of RC-BLAST in the system and it is clear that adding one
core of RC-BLAST to the system would increase the power consumption of the system
by just aroundi2mW . This clearly addresses the issue of scalability of the system
since, when a bigger FPGA is obtained the cores can be simply added to the system
with a lot lesser power consumption as opposed to adding a cluster of desktop proces-
sors where in the power consumption increases by ar@a00d’ each which is very
high. A plot comparing the power dissipation of desktop processors versus FPGA's for
various number of BLAST cores is shown igure 4.3and it is very clear from the

plot that FPGA's consume very less power with regard to processors and are at a very
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advantageous position over the desktop processors.

Comparision of RC-BLAST Power Dissipation
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Figure 4.3. Power Dissipation Statistics of RC-BLAST

Table 4.3. Power statistics for one core of RC- BLAST
Vce | Dynamic/ | Volts(V) | Current(mA)| Power(mW)

Quiescent
Vccint | Dynamic 1.5 8.42 12.63

4.3 Price

This section describes the effectiveness of the design in terpgaef Price im-
plicitly means the amount of dollars spent in order to run the complete system. From
section 4.1 it is clear that each Xilinx ML - 310 Development board which has a
XC2VP30 FPGA can hold 8 RC-BLAST cores and the approximate cost of the de-

velopment board is around $1000. Assuming the present prices of Desktop processors,
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Table 4.4. Power statistics for one core of RC- BLAST with On-chip
caching of Partial Look-up

Vce | Dynamic/ | Volts(V) | Current(mA)| Power(mW)
Quiescent
Vccint | Dynamic 1.5 8.33 12.49

an average node for a cluster costs around $450, thereby adding each desktop proces-
sor will enable to run more software versions of BLAST. An XC2VP100 FPGA from
Xilinx, which is one of the largest and costliest FPGA's available in the market can
accommodate up to 24 RC-BLAST cores. Based on the present estifrigies 4.4

is a plot that compares the number of BLAST cores obtained as the cost increases for
various hardware systems described above. It is clear from the plot that initially, the
regular desktop processors have an intrinsic advantage over the FPGA's, but as the price
increases, the FPGA solution presented overcomes all the advantages that the desktop
processors have and prove to be cost-effective providing more number of RC-BLAST

cores at a lesser cost.

Cost Effectiveness of RC-BLAST
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Figure 4.4. Scalability of RC-BLAST
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4.4 Performance

Performance is also an important aspect that has to be taken into consideration.
Since obtaining more number of cores at a lower price with a lot lesser power con-
sumption is of not much use unless there is enough performance obtained with the
solution presented. So in order to examine the performance of the FPGA based version
of BLAST, the number of lookup’s that can be performed per second was considered
as a good measure and is plotted for a query and a databBgpine 4.5 In Figure 4.5
“SIW on xc2vp30” indicates the time taken to perform the number of lookup’s on the
PowerPC processor inside the FPGA and “H/W + S/W on xc2vp30” indicates the time
taken to run the same number of lookup’s, with BLAST running on the Power PC pro-
cessor and the computationally intensive part running on the logic slices of the FPGA.
In order to have fair comparison, the same set of queries and databases were also run
on a Pentium 4 2.2 GHz Machine and an average of all the runs was taken and it can
be observed fronfrigure 4.5that the H/W and S/W implementation on the FPGA can
perform almost the same number of lookup’s/sec as a typical desktop processor.

So according to the results obtained in the above sections, it can be easily be stated
that with bigger FPGA's with more number of logic gates, more would be the number of
RC-BLAST cores that could fit in an FPGA with lot of less power consumption along

with speed-up at a very low cost.

4.5 Portability

The issue of portability is very important since the design has to meet various future
technologies that are going to be available in the near future. The present design can be

targeted to any platform FPGA from Xilinx, Inc with very minimal effort by simply us-
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Figure 4.5. Performance of RC-BLAST

ing the Xilinx Platform Studio and the Embedded Development Kit (EDK). With more
effort, the standard vendor tools could be used on other Xilinx based boards. How-
ever in order to implement the design for various other commercial Platform FPGA's
with different Bus Architectures, the design has to be undergo minimal changes in the
code by replacing the IPIF Interface present in the logic with the appropriate Bus In-
terface for the Platform FPGA chosen to use. Thereby in order to prove the concept of
portability, the RC-BLAST core designed was also synthesized to a bit-file for a Xilinx
ML-403 platform which hosts a Virtex 4 FPGA (XC4VFX12) using the Xilinx EDK
software and the resource usage is showkigure 4.6

This chapter analyzes all the results obtained as part of the experiments performed
in order to answer the various aspects of scalability, portability and cost-effectiveness

according to the thesis question madelapter 1
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Logic Utilization:
Number of Slice Flip Flops: 1,134 out of 10,944 10.3%

Logic Distribution:
Number of occupied Slices: 971 out of 5,472 17.7%

Figure 4.6. Amount of Logic resources used for one RC-BLAST core on
a Xilinx Virtex 4 FX - 12 device
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Chapter 5

Conclusion

The goal of the thesis work was to answer the questisra scalable and cost-
effective Reconfigurable Implementation of BLAST feasible which can aid scientists and
biologists in a more productive way®ased on the experiments and analysis performed
on the results obtained, the answer to the thesis questigesisa scalable and cost-
effective Reconfigurable Implementation of BLAST is feasible which can aid scientists
and biologists in a more productive way.

In order to answer the above question , these were the list of contributions as part

of the thesis.

e Repeated and verified the profiling characteristics as specifiedsign and Im-

plementation of Open source FPGA-based accelerator for BLISS|T

e Extended the profiling characteristic to several machines with different proces-

sors, memory, disk and network interfaces.

e Helped to quantify the I/O bound characteristic of BLAST by running it across

different file systems with different bandwidths.
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e Ported BLAST to Xilinx ML-310 Platform FPGA development board and char-

acterized the essential things needed to do a port

— Developed a hardware design for RC-BLAST which is scalable and cost-

effective.
— Ported Linux to a Platform FPGA .
— Developed a device driver that accesses the hardware from the software .
— Developed a patch to the BLAST software needed to invoke the hardware .

— Implemented and measured the pros & cons of using the On - Chip BRAM'’s

as a cache in order to speed up BLAST .

— Proved the concept of portability, by a dummy port to a Xilinx ML - 403

development board .

This work apart from just the implementation also showed a portable, scalable and
a cost effective solution with a lot of lesser power consumption for BLAST. Moreover
the source files for both hardware and software have been made Open-source under the
GNU Public License, so that many other researchers at various academic institutions
and industry can modify the source according to their interface and board requirements
and port it to their platforms with minimal modifications.

However, this work mainly concentrates on thlastn component of the BLAST
program which performs matching operations on nucleotide sequences and can be eas-
ily extended to other flavors of BLAST as mentionedthrapter 3

From the implementation statistics showndhapter 3 it is identified that the
BLAST heuristic is no longer compute bound, but an 1/0 bound problem. Future work
will focus on handling the I/O bound problem of the application in a more effective

way. This can be achieved in different ways.
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e Porting the FPGA based BLAST Algorithm to a Cray XD1#] where the mem-
ory bandwidth problem is of very less concern because of the architecture of Cray
XD-1. The architecture of Cray XD-1 uses a Rapid Array Interconnect and Rapid
Array Transport Interface in-order to reduce the memory bandwidth problem to
a large extent. Also porting the present implementation to an SGI - Adlix [
super computing machine whose main purpose is to deal with memory intensive

applications.

e Port FPGA based BLAST implementation to a Reconfigurable Cluster with SATA
drives [7] with FPGA's and use Aurora ProtocalT] for transmission of sequence

and query data over Rocket I/O Transceiveg petween FPGA’s.

e Port FPGA based BLAST to a Virtex IV device with a APU interface which
disables the extra latency obtained by the OPB and PLB buses in a Virtex Il Pro
FPGA.



67

Appendix A

Protocol Component Declarations

In this section, the vhdl entity declarations for the components that were used in the
design of theBLAST match unit are listed. As specified in trehapter 3the design is
attached to the On-Chip Peripheral bus as a Master-Slave user peripheral core. In-order
to simplify the process of attaching a user core to a Core-Connect bus like the On-Chip
Peripheral Bus, the user core makes use of a portable, predesigned bus interface (called
the IP Interface, IPIF) that takes care of the bus interface signals, bus protocol, and
other interface issues. The IPIF presents an interface to the user’s core called the IP
Inter-Connect (IPIC). Any user core that is designed with an IPIC has the advantage
that it is portable and can be easily reused on different processor buses by changing the
IPIF to which it is attached.

Various entities in th&LAST match unit design are as follows :

e The top-level entity with the IPIF and IPIC interface and master - slave compo-

nents for RC - BLAST to be compatible to run on the On-Chip Peripheral Bus

entity OPBBLAST is
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—— Generic Declarations for the Blast Match Unit

generic
(
C_.OPB.CLK_PERIODPS : integer = 10000;
C_IP.MASTER. PRESENT : integer := 1;
C_DEV_BLK_ID . integer := 0;
C_DEV_BURSTENABLE . integer :=0;
C BASEADDR : std_logic_vector(0 to 31) := X"93000000";
C_HIGHADDR . std_logic_vector(0 to 31) := X"930FFFFF;
C_DEV_MIR_ENABLE . integer = 0;
C_OPBAWIDTH . integer = 32;
C_OPBDWIDTH . integer = 32;
C_FAMILY . string '= "virtex2p”
);
port
(
——Global ports:
OPB_Rst . in  std_logic := '0’;
OPB_CIlk . in  std_logic := '0";
Interrupt . out std_logic;
IP2Bus.IntrEvent : in std_logic_vector(0 to 0);
—OPB ports master/ slave:
OPB_ABus :in  std_logic_.vector(0 to COPBAWIDTH —1);
OPB.DBus . in  std_logic_vector(0 to C.OPBDWIDTH—-1);
OPBBE :in  std_logic_.vector(0 to COPBDWIDTH/8-1);
OPBRNW . in  std_logic;
OPB_select . in  std_logic;
OPB_.seqAddr : in std_logic;
—OPB slave output ports:
SIn_DBus : out std_logic_vector(0 to COPBDWIDTH—1);
Slin_errAck . out std_logic;
Slin_retry . out std_logic;

SIin_toutSup : out std_logic;
SIin_xferAck : out std_logic;

—OPB master output ports:

Mn_ABuUs . out std_logic_vector(0 to COPBDWIDTH — 1 );
Mn_request . out std_logic;

Mn_busLock : out std_logic;
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Mn_select . out
Mn_RNW . oout
Mn_BE . out
Mn_seqAddr . out

—OPB master input ports:

OPB_MnGrant T in
OPB_xferAck in

OPB_errAck S in
OPB_retry cin
OPB_timeout T in

—— Other control ports:
Freeze 2in

)i
end entity OPBBLAST;

std_logic;
std_logic;
std_logic_vector(0 to COPBDWIDTH/8 — 1 );
std_logic;

std_logic := '0";
std_logic := '0’;
std_logic := '0";
std_logic := '0’;
std_logic := '0";
std_logic := 0’

Slave Interface of the BLAST match unit :- The slave interface is the main match

unit component which receives the subject sequence data from the device driver

and writes to the FIFO’s. The slave interface also has various other registers

which are necessary to debug while running the design on the hardware. After

the hardware is done with running it's function, the hardware sign&©AE

signal to the device driver which resumes the ordinary execution of the processor.

The slave interface is also responsible for writing the hit information back to the

Device Driver based on the subject sequence data and the query.

entity blast.slv is
port (

—— Signals from the IPIF

Bus2IP_.Reset
Bus2IP.Addr
Bus2IP.Clk

in std_logic;
in std_logic_vector(0 to 31);
in  std_logic;
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Bus2IP.RdReq : in std_logic;
IP2Bus RdAck : out std_logic;
Bus2IP.WrReq : in std_logic;
IP2BusWrAck : out std_logic;
Bus2IP.Data : in  std_logic_vector(0 to 31);
Bus2IP.Reg RACE : in std_logic_vector(0 to 3);
Bus2IP.Reg WrCE : in std_logic_vector(0 to 3);
IP2Bus Data : out std_logic_vector(0 to 31);
IP2Bus. Data Sel : out std_logic;

—— Signals between the Master and the Slave

bus_.request : out std_logic;

bus.request2 : out std_logic;

bus_reg.ack : in std_logic;

bus.req.ack?2 : in  std_logic;

bus_.rel_done?2 : in std_logic;

bus_.rel_done : in  std_logic;

lookup_reg : out std_logic_vector(0 to 18);
lookup_reg_plusfour : out std_logic_vector(0 to 18);
lookup_data : in std_logic_vector(0 to 31);
lookup_data?2 : in std_logic_vector(0 to 31);
ddr_addr : out std_logic_vector(0 to 31);
masterstatusreg : in std_logic_vector(0 to 7);
readcount : in std_logic_vector(0 to 31)

end )e’ntity blast.slv;

Master Interface of the BLAST match unit:- The master interface of the BLAST
match unit component is used to read the look-up table entries that are stored in
the DDR Memory based on the subject sequence data. The Master Interface has
a state machine that is invoked through the Slave State Machine, and obtaining
the required look-up table value, the control is reverted back to the Slave State

Machine which continues processing.

entity blastmsc is
generic
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(
C_.OPBAWIDTH : INTEGER := 32;
C_OPBDWIDTH . INTEGER := 32

)i

port

(

—— Signals from the IPIF

Bus2IP.Clk . in std_logic;
Bus2IP.Data :in  std_logic_vector(0 to COPBDWIDTH—-1);
Bus2IP_Freeze . in std_logic;
Bus2IP.MstRdAck . in  std_logic;
Bus2IP.MstWrAck :in  std_logic;
Bus2IP.MstRetry . in  std_logic;
Bus2IP_MstError :in  std_logic;
Bus2IP.MstTimeOut : in std_logic;
Bus2IP.MstLastAck : in std_logic;
Bus2IP.Reset . in  std_logic;
IP2Bus Addr . out std_logic_vector(0 to C.OPBAWIDTH — 1);
IP2Bus Data . out std_logic_vector(0 to COPBDWIDTH -1 );
IP2Bus MstBE : out std_logic_vector(0O to C.OPBDWIDTH/8 — 1);
IP2Bus MstRdReq . out std_logic := '0’;
IP2Bus MstWrReq . out std_logic := '0";
IP2Bus MstBurst : out std_logic := '0";
IP2Bus.MstBusLock : out std_logic := '0’;

—— Signals between the Master and the Slave——

bus.request . in std_logic;

bus.reg.ack : out std_logic := '07;
bus.request2 . in std_logic;

bus_.reg.ack?2 . out std_logic := '0";
masterstatusreg : out std_logic_vector(0 to 7);
lookup_data . out std_logic_vector(0 to 31);
lookup_data2 . out std_logic_vector(0 to 31);
lookup_reg . in  std_logic_vector(0 to 18);
lookup_reg_plusfour: in std_logic_vector(0 to 18);
read.count . out std_logic_vector(0 to 31);

ddr_addr :in  std_logic_vector(0 to 31);
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bus.rel_done2 . out std_logic :='0";
bus_.rel_done : out std_logic :='0’

) .

end entity blastmsc;
e Entity declaration for the FIFO :- The declaration of the FIFO has been designed
by concatenating two Block RAM’s available in all the Xilinx FPGAs. The same

entity is indeed used for both the Input and the Output FIFO’s. The FIFO’s have

a capacity to hold 1024 values and each value can be a 32-bit value.

entity bram is

port (
clk :in std_logic;
bram_.addra : in std_logic_vector(0 to 9);
bram.addrb : in std_logic_vector(0 to 9);

bram_dia . in std_logic_vector(0 to 31);
bram.dib : in std_logic_vector(0 to 31);
bramdopa : in std_logic_vector(0 to 3);
bram.dopb : in std_logic_vector(0 to 3);
bramwea . in std_logic;

bramweb :in std_logic;

bram.clka : in std_logic;

bram.clkb : in std_logic;

bram_ssra : in std_logic;

bram_ssrb : in std_logic;

bram_ena :in std_logic;

bram.enb . in std_logic;

bram.doa : out std_logic_vector(0 to 31);
bram.dob . out std_logic_vector(0 to 31);
bram_dipb : out std_logic_vector(0 to 3);
bram.dipa . out std_logic_vector(0 to 3));

end entity bram;
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Appendix B

Device Driver declarations

In this section, the device driver function declarations forBh& ST Match Unit
are specified. The device driver makes use of standard Linux System Calls in-order to

access the FPGA based Hardware.

rcblast-drv

*/

MODULE _DESCRIPTION " Device_.Driver_for .RC-BLAST_core”) ;
MODULE_LICENSE(”GPL") ;

EXPORTNO_SYMBOLS ;

static int ninstances= 1 ; /x Number of match instancesx/

e

Register Address declarations for the RC-BLAST Match unit Hardware
v

)

#define MSWSTART 0x00010000 /« Master Start =/
#define SLWSTART 0x00020000 /« Slave Start */
#define DDRBASE 0x00030000 /« DDR Base Address register x/



74

#define CMD 0x00040000 /x Commandregister x/
#define OUTRDC 0x00050000 /+ Output fifo read count x/
#define INWRC 0x00060000 /x Input fifo write count =/
#define INRDC 0x00070000 /* Input fifo read count x/
#define OUTWRC 0x00080000 /« Output fifo write count x/
#define SLSTAT 0x00090000 /x slave status */

#define MSSTAT Ox000A0000 /+ master status */

#define DONE 0x000B0O00O0 /* done register x/

#define SOFF 0x000CO0000 /+ subject offset register x/
#define SUBJSIZE 0x000D0000 /x size of the subject sequenceregister x
#define OUTFIFO Ox000EO0000 /+ Output Fifo */

#define INFIFO 0x000F0000 /* Input Fifo =/

#define INSIZE 1024 /* num. of 32— bit entries x/
#define OUTSIZE 1024 I+« num. of 32— bit entries x/
e

Pr

Prototypes and global variables

X

0
Pr

Sub-routine for allocating Virtual Memory Space in the Linux Kernel
J

static unsigned char xalloc ( unsigned long , unsigned long , char %) ;

iy

Sub-routine for Initializing the Hardware.

£

static int rcblastopen(struct inodex,struct file %) ;

e

Ik

Sub-routine for reading back the hit information from the Hardware.

of
)

static ssizet rcblastread(struct file x,char *x,size_t,loff_t x);

e

Pr

Sub-routine for writing to the Hardware.

J
)

static ssizet rcblastwrite(struct file x,const char x,size_t,loff_t x);
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A

0
Pr

Sub-routine for writing the Look—up table to the DDR — RAM.

X

static int write_lut(struct file =*,const char x,size_t,loff_t x) ;

e

iy

Sub-routine for writing the subject databaseto the FIFO’s.

£

static int write_fifo (struct file x,const char x,size_t,loff_t x) ;

e

Ik

Constant Declarations of the physical address space of the hardware

o
static unsigned long basel= 0x93000000;
static unsigned long lenl = 0x00100000;
Structure declaration of File Operations for RC-BLAST

of

static struct file_operationsrcblastfops = {
owner : THIS.MODULE,

open : rcblastopen,
read : rcblastread,
write : rcblastwrite,
mmap : rchlastmmap,
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