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ABSTRACT 
The general-purpose computing on graphics processing units 
(GPGPUs) are increasingly used to accelerate parallel applications. 
This makes reliability a growing concern in GPUs as they are 
originally designed for graphics processing with relaxed 
requirements for execution correctness. With CMOS processing 
technologies continuously scaling down to the nano-scale, on-chip 
soft error rate (SER) has been predicted to increase exponentially. 
GPGPUs with hundreds of cores integrated into a single chip are 
prone to manifest high SER. This paper aims to enhance the 
GPGPU reliability in light of soft errors. We leverage the GPGPU 
microarchitecture characteristics, and propose energy-efficient 
protection mechanisms for two typical SRAM-based structures 
(i.e. instruction buffer and registers) which suffer high 
susceptibility. We develop Similarity-AWare Protection (SAWP) 
scheme that leverages the instruction similarity to provide the near-
full ECC protection to the instruction buffer with quite little area 
and power overhead. Based on the observation that shared memory 
usually exhibits low utilization, we propose SHAred memory to 
Register Protection (SHARP) scheme, it intelligently leverages 
shared memory to hold the ECCs of registers. Experimental results 
show that our techniques have the strong capability of substantially 
improving the structure vulnerability, and significantly reducing 
the power consumption compared to the full ECC protection 
mechanism.   

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance; I.3.1 [Computer Graphics]: Hardware 
Architecture – Graphics processors 

General Terms 
Design, Reliability 

Keywords 
GPGPU, Reliability, Soft Error, SRAM, Energy Efficiency. 

1. Introduction 
Modern graphics processing units (GPUs) are composed of 

hundreds of on-chip cores, they support thousands of parallel 
threads and provide remarkably higher computational throughput 

than CPU. For example, NVIDA’s GeForce 8800 [1] provides up 
to 197× higher throughput than Intel’s Core2Duo processors on 
data intensive applications. The new programming models (e.g. 
NVIDIA CUDA™ [2], AMD Brook+ [3], and OpenCL [4]) further 
reduce the programmers’ efforts in writing general-purpose 
applications using GPUs. With the increasing computing power 
and improved programmability, general-purpose computing on 
GPUs (GPGPUs) emerges as a highly attractive platform for a 
wide range of parallel applications. In fact, a recent trend observed 
in TOP500 supercomputers is the increasing adoption of GPGPUs 
to deliver high computational throughput [15].  

This extensive usage of GPGPU makes reliability a critical 
concern. Current GPUs have quite limited capability in error 
detection and fault tolerance. Historically, GPUs are mainly 
designed for graphics processing, errors in those applications are 
effectively masked and 100% computation correctness is not 
required [5]. However, general-purpose applications such as 
scientific computing, financial application and medical data 
processing, require strict execution correctness. For example, in 
the GPGPU application computing a correlation function [25], 1% 
of value errors in any of the program output elements is treated as 
a silent data corruption (SDC) error and cannot be tolerated. From 
the device side, CMOS integrated circuits are facing high 
environmental susceptibility with the shrinking of feature sizes. 
Soft errors, also called transient faults or single-event upsets 
(SEUs), are failures caused by high-energy neutron or alpha 
particle strikes in integrated circuits. These failures may silently 
corrupt the data and lead to erroneous computation results. Soft 
error rate (SER) has been predicted to increase exponentially [6, 
7]. GPGPUs with hundreds of cores integrated into a single chip 
are prone to manifest high SER [8]. For examples, eight soft errors 
were observed in a 72-hour run of testing program on 60 NVIDIA 
GeForce 8800GTS 512 [9]. It is also found that the silent data 
corruption (SDC) ratio in commodity GPUs with weak/no error 
protection is 16~33% [10], significantly higher than that in CPUs 
(<2.3%) with strong protection. If left unattended, this reliability 
challenge will soon become obstacle to future GPGPUs by either 
preventing them from scaling down to smaller feature sizes or 
resulting in the imprecise operation of these systems.  

Existing soft-error reliability optimization mechanisms limit on 
CPU processors [11-14, 16-17] and largely ignore the emerging 
GPGPUs. In CPUs, the software-based redundancy, such as 
opportunistically triggering a redundant thread [16] when the main 
thread stalls for long-latency memory accesses, has been widely 
studied. It efficiently minimizes the performance degradation 
caused by the redundant execution since the main and redundant 
threads dynamically share the pipeline resources. However, every 
parallel thread in GPGPU has statically allocated resources, 
including the register files and on-chip shared memory, making 
such opportunistic redundant multi-threading infeasible. It has 
been found that the software-based replication in GPGPU leads to 
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high performance overhead if high fault coverage is desired [8]. 
Furthermore, methodologies that can be simply extended to 
GPGPUs fail to leverage the GPGPU microarchitecture 
characteristics in achieving the cost-effective fault-tolerance. For 
example, the error correction codes (ECC) table explored in [11] 
for CPU register protection may cause large area overhead when 
applied in GPGPU with thousands of registers. Therefore, it is 
imperative to develop a different set of GPGPU-aware reliability 
optimization techniques in the presence of soft errors.  

In this paper, we explore reliable GPGPU microarchitecture 
designs to efficiently combat soft errors in light of small-scale 
processing technology. We focus our study on SRAM-based 
structures, and it is a necessary first step towards protecting the 
entire GPGPU processor. By using a reliability-aware architecture 
simulator for GPGPUs, we find that the instruction buffer and 
register files are the major SRAM-based structures exhibiting high 
soft-error vulnerability. Both structures are sizeable that keep the 
architectural state; they are likely to be the reliability hot-spots. We 
take advantage of the GPGPU microarchitecture characteristics, 
and develop two cost-effective protection mechanisms for the 
instruction buffer and registers, respectively.  

The contributions of this work are: 
(1) We observe that threads usually keep similar progress when 

executing in the GPGPU streaming multiprocessor, and 
majority instructions in the instruction buffer share the 
identical PC. Thus, one instruction’s ECC could be used for 
multiple instructions. We propose Similary-AWare Protection 
(SAWP) to leverage the instruction similarity and protect the 
instruction buffer by implementing a small-size ECC table, 
which provides the near-full protection to the buffer with little 
area and power overhead.  

(2) We observe that the shared memory usually keeps low 
utilization in many GPGPU applications (detailed description 
is shown in Section 3.3.1). Considering its unique 
characteristics (e.g. read/write-able, low access latency), the 
shared memory serves as the ideal candidate for registers fault 
tolerance. We propose SHAred memory to Register 
Protection (SHARP) that takes advantage of the under-
utilized shared memory to intelligently hold the ECCs of a set 
of high vulnerable registers (i.e. registers with long lifetime), 
and substantially enhance the registers reliability with quite 
small area and power overhead.  

(3) Experimental results show that both SAWP and SHARP have 
the strong capability in fault tolerance with little power 
consumption. SAWP reduces the soft-error vulnerability of 
instruction buffer by 68%, and SHARP reduces register 
vulnerability by 41% compared to the case without any 
protection scheme. Moreover, SAWP (SHARP) is able to 
reduce the power consumption by 17% (18%) compared to 
the full ECC protection mechanism.  

The rest of this paper is organized as follows: Section 2 
provides background on GPGPUs and soft errors. Section 3 
presents our two techniques to cost effectively enhance the soft-
error robustness of SRAM-based structures in GPU streaming 
multiprocessors. Section 4 describes experimental methodologies. 
Section 5 evaluates the proposed techniques. We discuss the 
related work in Section 6, and conclude the paper in Section 7. 

2. Background 
2.1. General-purpose computing on graphics 
processing units (GPGPUs) architecture 

A typical GPU consists of a scalable number of in-order 
streaming multiprocessors (SM) that can access to multiple on-chip 
memory controllers via an on-chip interconnection network [2]. 

Figure 1 illustrates the SM microarchitecture [35]. It contains the 
fetch and decode unit, instruction buffer (I-Buffer), branch unit, 
register file (RF), streaming processors (SP), special functional 
units (SFU), load-store units, shared memory, and so on.  

 
Figure 1. An overview of the SM microarchitecture 

To facilitate GPGPU application development, several 
programming models have been developed by NVIDIA and AMD. 
In this paper, we study the NVIDIA CUDA programming model 
but the basic constructs will hold for most programming models. In 
CUDA, the GPU is treated as a co-processor that executes highly-
parallel kernel functions launched by the CPU. The kernel is 
composed of a grid of light-weighted threads; a grid is divided into 
a set of blocks (referred as cooperative thread arrays (CTA) in 
CUDA); each block is composed of hundreds of threads. Threads 
are distributed to the SMs at the granularity of blocks, and threads 
within a single block communicate via the shared memory and 
synchronize at a barrier if desired. Per-block resources, such as 
registers, shared memory, and thread slots in an SM are not 
released until all the threads in the block finish execution.  

Threads in the SM execute on the single-program multiple-data 
(SPMD) model. A number of individual threads (e.g. 32 threads) 
from the same block are grouped together, called warp. In the 
pipeline, threads within a warp execute the same instruction but 
with different data values. Each SM interleaves multiple warps 
(e.g. 32) on a cycle-by-cycle basis. The execution of a branch 
instruction in the warp may cause warp divergence when some 
threads jump while others fall through at the branch.  

As Figure 1 shows, each warp has a dedicated slot in the fetch 
unit and I-Buffer. It also has own stack in the branch unit recording 
the reconvergence PC (RPC) and active mask (used to describe the 
active threads in the warp) to handle the warp divergence. At every 
cycle, the fetch unit selects the PC for a warp whose instruction 
slot is empty (i.e. the Valid bit is set as invalid in the instruction 
buffer), and fetches the instruction from the instruction cache. The 
instruction is decoded and written into the corresponding warp slot 
in the instruction buffer. It waits there and will not be ready for 
issue until its previous instruction completes. By checking the 
Ready bit in the instruction buffer, the issue logic chooses a ready 
warp instruction for the register access and execution. Once issued, 
the slot holding that issued instruction is marked as invalid in the I-
Buffer. In the SM, all threads in a warp access the same-named 
registers (i.e. register vector) simultaneously, the register values 
are processed in parallel across the SP, SFU or load-store units. 
GPU is usually equipped with its own off-chip external memory 
(e.g. global memory) connected to the on-chip memory controllers. 
The off-chip memory access can last hundreds of cycles, and a 
long latency memory transaction from one thread would stall all 
threads within a warp. In other words, the warp cannot proceed 
until all the memory accesses from its threads complete. The 
load/store requests issued by different threads can get coalesced 
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into fewer memory requests according to the access pattern. 
Memory coalescing improves performance by reducing the 
requests for memory access. 

2.2. Microarchitecture level soft-error 
vulnerability analysis 

A key observation of soft error behavior at microarchitecture 
level is that a SEU may not affect processor states required for 
program’s correct execution. At microarchitecture level, the 
overall hardware structure’s soft error rate is decided by two 
factors [17]: the FIT rate (Failures in Time, which is the raw SER 
at circuit level) per bit, mainly determined by circuit design and 
processing technology, and the architecture vulnerability factor 
(AVF) [20]. A hardware structure’s AVF refers to the probability 
that a transient fault in that hardware structure will result in 
incorrect program results. Therefore, the AVF, which can be used 
as a metric to estimate how vulnerable the hardware is to soft 
errors during program execution, is determined by the processor 
state bits required for architecturally correct execution (ACE). At 
the instruction level, an instruction is defined as ACE instruction if 
its computation result affects the program final output, and AVF is 
primarily determined by the quantity of ACE instructions per cycle 
and their residency time within the structure [20]. In this study, we 
use AVF as the major metric to estimate structure soft-error 
vulnerability. 

3. Cost-effective soft-error protection for 
SRAM-based structures in streaming 
multiprocessors 

In this section, we analyze the GPGPU microarchitecture 
vulnerability, and find that among various SRAM-based structures 
in the streaming multiprocessor, the instruction buffer and registers 
show great susceptibility to soft errors. We make two observations 
on GPGPU microarchitecture characteristics, and leverage them to 
propose a set of protection techniques for the two structures in 
Section 3.2 and 3.3., respectively. 

3.1. Motivation: the reliability hot-spots in 
GPGPU microarchitecture 

 
Figure 2. The AVF of the key GPGPU microarchitecture 
structures including instruction buffer, branch unit, register 
files, and shared memory  

There have been various frameworks developed to estimate the 
CPU microarchitecture level soft error vulnerability [21, 22]. 
However, they are not applicable to the GPGPU microarchitecture 
that implements in-order SIMD pipeline and has significantly 
different architecture and data/control flow from general-purpose 
CPU processor. We develop a reliability-aware simulator for 
GPGPUs, it is built upon a cycle-accurate and open-source 
simulator, GPGPU-Sim [34]. We apply two major AVF calculation 
methodologies proposed in [20, 31] to identify the bits required for 
architecturally correct execution and their residency time in each 
structure to estimate the AVF. Using the framework, we profile the 
soft-error vulnerability of several key structures in SM (shown in 
Figure 2). Since the slots in the fetch unit and the instruction buffer 

have the same design: both hold the designated warp 
PC/instruction, the two structures manifest quite similar 
susceptibility to soft errors, the AVF of fetch unit is not presented 
in the figure. Moreover, Figure 2 does not show the AVF of L1 
constant and texture caches because the studied workloads either 
do not or rarely use those two structures and their AVF is lower 
than 4%. The detailed experimental setups are illustrated in Section 
4. In this study, we target on the reliability optimization on SRAM-
based structures, improvement on combinational-logic based 
structures (e.g. streaming processor) is beyond the scope of this 
paper. 

As Figure 2 shows, the instruction buffer and register files 
exhibit much higher AVF than other structures (this also matches 
the observation made in [39]), because they are highly utilized 
during the program execution while others are infrequently used. 
Take the branch unit as an example, only one entry of the warp 
stack is used when there is no branch divergence, and the stack 
entries are not fully utilized even when the warp diverges. As it 
shows, the AVF of the instruction buffer and register files can 
achieve up to 98% and 81%, respectively. Moreover, they are 
sizeable and occupy a large portion of the SM area: the instruction 
buffer has to hold all in-flight warps in the SM; the registers are 
much larger than those in traditional CPU processor as they have 
to support thousands of simultaneously active threads. For 
example, the registers size is reported to be 2MB in an NVIDIA 
Fermi GPU [26] and 6MB in AMD Cayman [27]. Therefore, the 
vulnerability of instruction buffer and registers significantly 
contributes to the stream multiprocessor SER robustness. In this 
paper, we focus on mitigating the two structures’ vulnerability, it is 
the first and essential step to efficiently optimize the overall 
GPGPU reliability. Note that our observation and technique 
proposed for the instruction buffer is applicable to the fetch unit as 
well. 

3.2. SAWP: Similarity-AWare Protection for 
the instruction buffer 
3.2.1. Instruction similarity in the instruction 
buffer  

The observation we make on the instruction buffer (I-Buffer) is 
the instruction similarity: a large number of instructions in the I-
Buffer share the same PC and hold the identical information. As 
described in Section 2.1, the warps in the SM are interleaved at 
cycle-by-cycle basis. At every cycle, an instruction is issued for a 
warp which is selected in a round robin (RR) manner among the 
warps with instructions ready to execute. In the CUDA 
programming model, all threads in a kernel execute the same code 
and the same instruction from different warps will keep the same 
register information after decoding [36, 37], therefore, all 
instructions in the I-Buffer can be represented by just two 
instructions in the ideal case that warps proceed normally without 
stalls. In order to improve the GPGPU throughput, various warp 
scheduling policies have been explored: First-Ready First-Served; 
Fair [28] which issues instruction for the warp with minimum 
number of instructions executed; and two-level round-robin warp 
scheduling that effectively hides long memory access latency and 
improves the SPs utilization [36]. Since every warp has a dedicated 
entry in the I-Buffer, there will be an empty instruction slot when 
the instruction is issued, and only the following instruction from 
the same warp will be placed into that slot. Different from the 
simultaneous multithreading architecture, there is no resource 
contention among warps in SM which helps to control the progress 
difference among warps. As a result, even though some 
instructions are stalled in the I-Buffer by the branch divergence, 
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off-memory access transactions, and barriers; while some are 
granted the higher issue priority under the impact of the warp 
scheduling policy, a large amount of instructions in the instruction 
buffer still share the same information.  
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Figure 3. (a) The histogram and (b) the cumulative distribution 
function of the number of unique instructions 

Figure 3 (a) plots the histogram of the number of unique 
instructions in the I-Buffer under the RR, two-level, First-Ready 
First-Serve, and FAIR policies. The I-Buffer size is set as 32. At 
every cycle, we collect the amount of unique instructions, and 
present the statistics as the probabilistic-based distribution at the 
Y-axis. In addition, Figure 3 (b) profiles the corresponding 
cumulative distribution function (CDF). The results are averaged 
across the studied benchmarks. As shown in Figure 3 (a) and (b), 
the case with only two unique instructions accounts for the largest 
fraction of the program execution time under various scheduling 
policies: 21% for RR, 19% for two-level, 21% for First-Ready 
First-Served, and 32% for FAIR. And the maximal number of 
unique instructions is limited to 12. It implies that a small number 
of instructions (e.g. 12) are sufficient to describe all the 
instructions sitting in the instruction buffer through the entire 
program execution, and this observation is not affected by the warp 
scheduling policy.  

As a conventional and straightforward fault-tolerance 
mechanism, ECC provides the full protection to the vulnerable 
structure but leading to a large power and area overhead. When 
extending this technique to the I-Buffer, a full ECC table to all the 
instructions is not necessary since most instructions in it are the 
same. The ECC table size can be significantly reduced without 
losing any error coverage.  

3.2.2. Concept of SAWP 
In order to cost-effectively mitigate the soft error rate in the 

instruction buffer, we propose Similarity-AWare Protection 
(SAWP). It leverages the instruction similarity to implement a 
small-size ECC table for the I-Buffer with low area and power 
overhead.  

Based on our observation in Section 3.2.1., an ECC table with 
12 entries is sufficient for a 32-entry instruction buffer to obtain 
the full error detection. As Figure 3 (a) shows, the distribution for 
the PC quantity drops greatly as the number increases from 2 to 12. 
Specifically, the case with 12 unique PCs only appears in less than 
1% of the execution time. Figure 3 (b) further confirms that an 11-
entry ECC table already has the capability to capture 99% of the 
PCs in the instruction buffer. Moreover, the area overhead 
increases proportionally to the ECC table size. A sensitivity 
analysis is required to justify the effectiveness on achieving the 
best trade-off between reliability and power&area overhead when 
changing the table size. Based on the comprehensive analysis on 
various table size options, we find that the 4-entry ECC table 
outperforms other designs, and it is adopted in SAWP. 

The SAWP supports two major operations for every instruction 
in the instruction buffer: ECC generation and entry allocation, and 
error detection/correction.  

3.2.2.1. ECC generation and entry allocation 
    In the full-size ECC table, each instruction in the I-Buffer has an 
allocated ECC entry. When a new instruction arrives at the I-

Buffer, its ECC is written to the designated entry directly. While in 
our small-size ECC table, one ECC entry may be shared by 
multiple instructions. When an instruction enters the instruction 
buffer, it needs to find out the certain entry holding its ECC. In 
SAWP, one existing bit is attached to each I-Buffer entry to 
describe whether the ECC table has the instruction’s ECC, and a 
two-bit index is added to specify its corresponding ECC entry. In 
addition, a field is attached to each ECC entry holding the number 
of certain I-Buffer entry that is under its protection. The newly 
arriving instruction will compare with four instructions in the I-
Buffer based on the warp IDs in the ECC table. A hit implies that 
one ECC record can be re-used by the new instruction. 
Correspondingly, the ECC entry number will be written into the I-
Buffer with the new instruction, and its ECC existing bit is set as 
“1”. On the other hand, if there is no match, the ECC generation 
and ECC entry allocation requests will be sent to the ECC 
generator and the ECC table. If there is an idle entry in the ECC 
table, it will be allocated to the new instruction. Otherwise, an 
occupied entry has to be replaced to accept the newly generated 
ECC. In one sentence, the ECC generation and entry allocation is 
mainly composed of two parts: (1) instruction comparison and 
ECC generation; (2) ECC entry allocation and replacement. 
(1) Instruction comparison and ECC generation 

When a new instruction reaches the instruction buffer, the 
instruction comparison is triggered to determine if an ECC 
generation is required. Since the I-Buffer is vulnerable to soft 
errors, instructions in it can be erroneous and may affect the 
comparison correctness. In this study, we focus on the single-bit 
error model which has the first order impact on the failure rate in 
microprocessors [30]. One single-parity bit is used per I-Buffer 
entry to detect the erroneous instruction. The parity bit is checked 
during the instruction comparison. And the ECC generation 
request will be sent out only when there is a match with a fault-free 
instruction. It is possible that the new instruction receives miss 
while one matched instruction does exist among those four 
compared instructions but its bit is flipped due to the soft error. 
Similarly, the ECC table is vulnerable and the stored warp ID is 
likely to be erroneous and index to a different instruction for the 
comparison, leading to a miss as well. A new ECC entry will be 
allocated for the new instruction in both cases. It would reduce the 
error coverage because two identical ECC copies will appear in the 
ECC table, but it does not affect the error checking correctness.  

(2) ECC entry allocation and replacement  
At the cycle level, an ECC record may have only one 

corresponding instruction or even be shared by all the instructions 
in the I-Buffer. Because threads do not progress at 100% the same 
rate and instructions exhibit different residency latency in the 
instruction buffer. Intuitively, the ECC used by minimum number 
of instructions should be replaced by the newly generated ECC to 
achieve the best error coverage. However, it is possible that the 
new instruction belongs to a warp proceeding ahead/behind others, 
and its ECC is unlikely to be accessed in the following cycle; even 
worse, the previously evicted ECC may be generated again to 
serve the ECC entry allocation request from the next arriving 
instruction. Since the most recently inserted ECC only has one 
instruction in the I-Buffer, it becomes the one to be replaced. This 
results in a ping-pong effect which significantly reduces the 
number of instructions that can be protected and increases the 
power consumption due to the frequent ECC generation and write 
operations to the ECC table. Figure 4 shows an example of the 
ping-pong effect.  

A simple solution to this effect is to use a threshold to control 
the entry replacement. When the amount of instructions sharing an 
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ECC exceeds the threshold, this ECC will not be evicted as it still 
provides the protection for numerous instructions. In this study, we 
set the threshold as four based on the detailed sensitivity analysis. 
Furthermore, an ECC will not be replaced when the warp that the 
new arriving instruction belongs to is far before/behind other 
warps. Because the identical instructions from other warps will not 
appear in a short time, the new ECC only protects a single 
instruction. 

(a) An incoming instruction will 
replace the “SUB” instruction 
ECC with the minimum number 
of instructions (i.e. 5) 

 
 
(b) The “SUB” ECC is evicted, 
and its corresponding five 
instructions lose the ECC to 
compare with when issued 

   
 
(d) The “SUB” ECC is 
inserted again, the ECC is 
frequently generated and the 
table is frequently written  

 

 
(c) The “SUB” ECC is requested 
by the new arriving instruction, the 
previous inserted ECC (the “SLE” 
ECC)has to be evicted 

Figure 4. The ping-pong effect during ECC entry allocation 
and replacement   

3.2.2.2. Error Detection/Correction 
While an instruction is issued for the register read, the error 

detection/correction is triggered. Its parity bit is first checked for 
the error detection. If the faulty instruction’s ECC exists in the 
ECC table, both the instruction and its ECC will be sent to the 
ECC checker for error correction. To make sure that an instruction 
retrieves its ECC correctly, the gate-sizing technique is applied to 
protect the existing bit and the two-bit index against the soft errors. 
A detected erroneous instruction will be flushed and re-executed. 
A bit flip in the ECC field can be easily detected and corrected in 
the ECC checker, even the ECC table is attacked by soft errors, it 
does not affect the error correction for the issued instructions.  

3.2.3. SAWP Implementation 
Figure 5 introduces the implementation of the instruction 

comparison, ECC entry allocation and replacement, and the error 
detection/correction in SAWP architecture. Each entry in the ECC 
table consists of three components: the ECC, the ID of certain I-
Buffer entry it protects, and a counter to record the number of 
instructions currently in the I-Buffer sharing this ECC. There are 
32 entries in the I-Buffer, five bits are used in each ID filed and 
counter. As described in Section 3.2.2., the single parity bit, 2-bit 
index and existing bit is added to each I-Buffer entry. As Figure 5 
shows, when a new coming instruction is writing into the I-Buffer, 
(a) it is compared with four instructions in the I-Buffer based on 
the IDs kept in the ECC table. (b) The result analyzer accepts the 
comparison result and determines the next step towards (c) or (d). 

(c) When there is a match with a fault-free instruction, it writes 
the matched instruction’s index into the I-Buffer to build up the 
link between the new instruction and its ECC, and the counter in 
the ECC entry increases by one. To make sure that the ID field in 
the ECC table keeps the latest instruction information, the ID of 
the I-Buffer entry that holds the new instruction will write into the 
ID filed in the corresponding ECC entry as well.  

(d-1) When there is a miss, the warp progress is checked (the 
numbers of instruction executed in each warp is evaluated), and an 
ECC entry replacement request is assigned when the warp that the 
new instruction belongs to keeps the similar rate with others. (d-2) 
Meanwhile, the counters in the ECC table are read out and 
compared with the pre-defined threshold (i.e. 4) to select an entry 
for eviction, and the ECC generation request is sent to the ECC 
generator. Note that the counters do not need error protection, 
because a faulty counter only affects the entry eviction, but has no 
impact on the correctness of the SAWP architecture. (d-3) There 
may be few instructions in the instruction buffer still pointing to 
the evicted entry. Therefore, the entry number broadcasts to the I-
Buffer, and the existing bit in the matched indices is reset to “0”. 
(d-4) Upon the completion of the ECC generation and entry 
replacement, the instruction’s index, the ID field and the counter of 
the new ECC entry are updated correspondingly. And the existing 
bit is set to “0” when the instruction’s ECC is not qualified to 
replace any entry in the ECC table, which indicates that the 
instruction is not protected by SAWP.  

Note that the instruction comparison, ECC generation, and 
ECC entry allocation perform in parallel with the instruction 
writing to the I-Buffer, it does not introduce any delay to the 
critical path. Those steps will not finish in one cycle, it is pipelined 
so that the incoming instruction does not need to wait for the 
completion of the previous instruction’s operations.  

As shown in Figure 5, at the time that an instruction is moving 
out of the instruction buffer and its existing bit is “1”, the counter 
of the its ECC entry decreases by 1. The entry is evicted once the 
counter equals to zero. (e) If the instruction is faulty based on the 
single parity bit, it is dropped in the pipeline. It will be sent to the 
ECC checker with its ECC to retrieve the correct instruction, 
which will then be re-issued into the pipeline. In SAWP, the error 
detection and correction perform simultaneously with the pipeline. 
They are pipelined so that the instruction issued in the following 
cycles can start the error checking while the previous instruction is 
still under error correction. When an instruction is issued, it takes a 
few cycles before it starts to update the register/memory (the 
pipeline usually consists of 24 stages in the SM [34]). This 
provides enough slack for SAWP to verify the instruction 
correctness, and only the faulty instruction needs to be dropped, no 
further action is required to restore the registers/memory states.  

3.2.4. Overhead analysis 
As described in Section 3.2.3., SAWP requires a 4-entry ECC 

table. Each ECC entry contains 7-bit ECC (we assume a single bit 
error model in this study), 5-bit ID field, and 5-bit counter. 
Moreover, 4 bits are attached to each slot in the instruction buffer. 
SAWP also uses some combinational logics including the ECC 
generator and checker, and the result analyzer (it is a simple 
multiplexer). Compared to the case implementing full-size ECC 
table, SAWP reduces the area overhead up to 12% based on our 
gate-level estimation. More importantly, whenever an instruction is 
writing into the I-Buffer, its ECC has to be generated and written 
into the table in the full-size ECC table which causes high power 
consumption. SAWP effectively limits the ECC generation times 
by leveraging the instruction similarity, thus, the power 
consumption decreases substantially.   

3.3. SHARP: SHAred memory to Registers 
Protection 
3.3.1. The key observation on the shared memory 

In the GPGPU SM, the per-block resources (e.g. shared 
memory, registers) will not be released until the block completes 
execution. They limit the maximum number of blocks that can be 



6 
 

simultaneously assigned to an SM. Different per-block resources 
become the bottleneck during block allocation for kernels that have 
various resource requirements. Intuitively, the bottleneck structure 
is prone to be fully utilized and manifest high vulnerability. 
Interestingly, we observe the low utilization in the shared memory 
even it acts as the bottleneck resource. Shared memory is highly 
banked. The bank selected to hold a data value is determined by 
the data address, which leads to the unbalanced bank usage in a 
block. In other words, the number of blocks that each bank can 
support is different, and the minimum number finally limits the 
quantity of blocks the shared memory can support. Thus, even 
though shared memory becomes the resource bottleneck, most 
banks in it may be underutilized. Figure 6 presents the percentage 
of used entries in the shared memory for each benchmark 
(benchmark investigated in this study is listed in Section 4). On 
average, it is only 20%. In workloads whose block resource 
allocation is limited by the share memory (e.g. LPS, SP, SRAD), 
more than 50% entries are never be used during the entire 
execution time. For those used entries, they are written/read in a 
very short period and become free in majority of the time.  

In summary, although shared memory is the software-managed 
cache for memory reuse, it is lightly utilized in many applications 
[29, 38]. First, memory reuse is limited by the nature of 
applications. For example, computation-intensive applications 
have little memory reuse. Second, shared memory needs to be 
synchronized to ensure access order among threads, and it has the 
bank conflict problem while addressing data. These increase the 
difficulty for program developers in efficiently using shared 
memory as the on-chip chip for global memory. Based on our 
analysis on a large set of widely-used GPGPU benchmarks, few 
benchmarks heavily use shared-memory. 

 
Figure 6. Shared memory utilization in percentage 

3.3.2. The concept of SHARP 
In order to improve registers SER robustness, a simple and 

direct approach is to implement the ECC for each register vector. 
When registers are not the resource bottleneck, each thread in the 
SM will be allocated more than sufficient amounts of registers, and 
some of them will be idle through the entire thread execution. 
Those idle register vectors can be used to store the ECCs of other 
active register vectors to reduce the SER. We name this method as 
register-to-register protection or RTRP as an abbreviation. RTRP 
could largely enhance register reliability when there are numerous 

free registers. However, it loses the benefits when all the available 
register vectors are used during the kernel execution. Even worse, 
the vulnerability of registers increases dramatically in benchmarks 
requiring heavy register utilizations. A technique is highly desired 
to optimize registers SER robustness when they face the severe 
vulnerability challenge. As we discussed in Section 3.3.1., shared 
memory contains many always-idle entries and exhibits low AVF, 
moreover, it is read/write-able and its access latency is comparable 
to the register access latency. Shared memory is a good candidate 
to keep the ECCs and provide the protection to fully-utilized 
registers. In this paper, we propose SHAred memory to Register 
Protection (SHARP) to intelligently store the ECCs of a set of 
register vectors into shared memory and efficiently mitigate 
register vulnerability.  

3.3.2.1. Register selection for error protection  
The register file AVF is the averaged ratio of each register’s 

lifetime to the workload execution time [31], one can develop the 
100% fault-tolerant registers by recording/checking every register 
vector’s ECC once it is written/read. At every cycle, there are 
many register reads and writes, but shared memory usually serves 
no more than 16 access requests per cycle, thus, it is not feasible to 
perform the ECC protection for each single register vector through 
its lifetime. SHARP selectively protects a set of register vectors 
and meanwhile, maximizes the benefits by using the limited shared 
memory resources. [11] observes that the long-lived registers are 
the major contributors to the overall registers AVF. In other words, 
the register vulnerability will drop significantly if the long-lived 
registers are fault-free. When an off-chip memory access occurs in 
a thread, all threads within the warp have to stall until it finishes, 
which tremendously extends the lifetime of registers belonging to 
that warp. In SHARP, the ECC recording/checking is triggered 
when a warp starts/completes the long memory operations, and it is 
performed at the warp level, which means that all register vectors 
assigned to that warp will experience the ECC recording/checking 
process.  

3.3.2.2. ECC mapping mechanism to share memory 
We propose a novel ECC mapping strategy to achieve the fast 

ECC access in shared memory. In this study, we assume a single 
bit error model in each 32-bit register. Every register in a register 
vector requires 7 ECC bits, and one 32-bit shared memory entry 
can only record 4 registers’ ECCs as one bit in the entry will be 
used to describe the status (busy or free) of those saved ECCs. 
Furthermore, a valid bit is attached to each entry to mark if the 
entry currently keeps a real value. As can be seen, one register 
vector requires 8 shared memory entries for its ECC.  

In the shared memory, each bank can serve only one entry 
access per cycle, and 8 ECC access requests for one register vector 
may take 8 cycles to finish if they are all mapped to different 

Figure 5.  The implementation of SAWP 
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entries within the same bank. The access time decreases 
dramatically if the 8 requests distribute to different banks, which 
mainly depends on the mapping policy. Figure 7 illustrates the 
SHARP mapping mechanism by presenting an example of placing 
ECC of 4 registers into share memory. Note that they belong to the 
same register vector. As our default GPGPU configuration in 
Section 4 describes, the registers size is 64KB and each register 
vector number is 9-bit long. Every 4 consecutive registers in a 
register vector are gathered into one group, which is identified by 
attaching 3 bits to the least significant bit of the vector number 
(total 12 bits). To evenly distribute groups into each bank, the 
lowest 4 bits of the group identification number are used to index 
the shared memory bank (shared memory has 16 banks). And the 
remaining bits are used to locate the entry within the bank. Note 
that entry conflict occurs when two register groups map to the 
same entry. Basically, it would not happen within the warp based 
on our mapping mechanism, as long as the shared memory is large 
enough to save the register vectors’ ECCs for just one warp, which 
is usually the case in current GPGPU microarchitecture design. 
The conflicts could only exist at inter-warp level.     

 
Figure 7. ECC mapping to shared memory 

3.3.3. The implementation of SHARP 
Figure 8 describes the implementation of SHARP. A request 

queue is attached to the register files, it is composed of a FIFO 
buffer and a warp ID table. The buffer keeps a number of requests 
for the warp-level ECC access, and the table records warp IDs 
whose registers are currently protected in the shared memory.  

When a warp starts/completes an off-chip memory access (the 
coalesced intra-warp memory operations is treated as one access), 
an ECC recording/checking request with the warp ID are sent to 
the queue. When an ECC recording request arrives at the head of 
the buffer, the request queue reads its warp ID, performs the inter-
warp ECC conflict examination to check if its mapped entries in 
the shared memory have already been occupied by another warp. It 
starts the recording if no conflict, the warp ID is also saved into the 
warp ID table; otherwise, the request is simply dropped. When the 
buffer head is an ECC checking request, the request queue enables 
the checking as long as its warp ID exists in the table.  

Registers are highly banked (e.g. 16 banks) and each bank is 
equipped with a read port. The register vectors are interleaved 
across the banks to increase the likelihood that all the operands for 
an instruction can be fetched simultaneously. By running a large 
number of benchmarks, we observe that no more than 4 banks are 
accessed concurrently during 99% of the execution time. It implies 
that the read ports of a large number of register banks are idle and 
they could be used to read register contents during the ECC 
generating/checking without affecting the normal thread execution. 
Note that the ECC related operations are assigned a lower priority 
compared to the operands read required by threads for the same 
bank. It is the case in the shared memory as well. A waiting queue 
is attached to temporarily hold the register group numbers and 
values that are waiting for the available write/read port in shared 
memory banks. The register read stalls if the waiting queue is full 
and resumes once it has free slots.  

To perform an ECC recording, the register contents are sent to 
the ECC generator to produce ECCs which are further buffered in 
the waiting queue for write operations, meanwhile, the 
corresponding register group numbers are saved in the waiting 
queue for ECC mapping. Note that a real value is written to a 
shared memory entry normally and its valid bit is set as “1”, a 
future ECC write/read to this entry will fail/miss to guarantee the 
program execution correctness. When the valid bit of the shared 
memory entry is “0” and the ECC recording completes 
successfully, the status bits in the entries are set as busy.  

An ECC checking is enabled when the memory access 
completes, the register group numbers and contents move into the 
waiting queue and wait for their ECCs from the shared memory if 
exist (i.e. the valid bit of the shared memory entry is “0” and the 
status bit is busy) to perform the error checking in the ECC 
checker. The register group number and correct value will be sent 
back to the registers when an error is detected. Afterwards, the 
obtained off-chip memory values are written back to the registers, 
and the request queue is updated to keep the up-to-date warp ID 
information.  

 
Figure 8. The detailed design of SHARP 

The request queue and waiting queue are also vulnerable to soft 
errors. A faulty request may lead to different warp registers 
mapping to the share memory. And an error in the waiting queue 
causes wrong data written/read during the ECC 
recording/checking. We apply the gate-sizing technique to protect 
the two structures. Note that a bit flip in the ECC field can be 
easily corrected in the ECC checker, although shared memory may 
be attacked by the soft errors, it does not affect the correctness of 
SHARP. 

3.3.4. Overhead analysis 
Both registers and shared memory are highly banked, the warp-

level register read and ECC write/read usually complete in several 
cycles, moreover, it takes a few cycles to finish an ECC 
recording/checking operation. Since the ECC recording is not in 
the SM critical path, it does not introduce any extra delay. Even 
though the stalled warp will not proceed during the ECC checking, 
SHARP introduces negligible performance penalty as other ready 
warps can still be issued to hide that ECC checking latency.    

It is possible that a warp is stalled by a sequence of long latency 
memory operations that cannot be coalesced, and the completion of 
one operation only updates one or very few registers. Repeatedly 
performing the ECC recording and checking per memory access 
for that warp results in severe power overhead. To achieve the 
good trade-off between reliability and power, only one pair of ECC 
recording and checking requests is issued at the occurrence of the 
first memory access and at the completion of the last memory 
access, respectively. When one access finishes, the updated 
register group number are directly sent to the shared memory, their 
ECC status bits in the mapped entries are simply reset to free, and 
they will be skipped during the ECC checking.  
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  The buffer size in the request queue determines the number of 
ECC requests can be accepted. A large buffer is able to keep all the 
requests but may significantly delay a warp ECC checking and 
increase its stall time as requests are performed at the FIFO order. 
We set the buffer size as 16 in this study, and each entry contains 1 
bit describing request type, and 5-bit warp ID. In addition, the 
warp ID table has 32 entries, each with 5 bit ID. In SHARP, as 
long as a warp ECC recording is performed, its ECC checking 
needs to be executed to delete the corresponding warp ID saved in 
the request queue. Otherwise, the request queue will not accept the 
following ECC related requests issued by the same warp due to the 
conflict checking. The buffer may be full when a checking request 
is issued, a latest inserted recording request will be dropped in that 
case. In this study, the waiting queue contains 8 140-bit (12-bit 
register group number and 4X32-bit content) entries which is large 
enough to accept data from the registers/ECC generator and 
provide data to shared memory/ECC checker at every cycle. 
Overall, the attached buffers and combinational logics introduce 
5% hardware overhead to the register files.  

4. Experimental Methodology 
We use the developed GPGPU reliability-aware simulator 

based on GPGPU-Sim to obtain the GPGPU reliability, 
performance, and power statistics. Our baseline GPGPU 
configuration is set as follows: there are 28 SMs in the GPU, SM 
pipeline width is 32, warp size is 32, each SM supports 1024 
threads and 8 blocks at most, each SM contains 16K 32-bit 
registers, 16KB shared memory, 8KB constant cache, and 64KB 
texture cache, the warp scheduler applies the round robin 
scheduling policy, the immediate post-dominator reconvergence 
[18] is used to handle the branch divergences; the GPU includes 8 
DRAM controllers, each controller has a 32-entry input buffer, and 
applies out-of-order first-ready first-come first-serve scheduling 
policy; the interconnect topologies is Mesh, and the dimension 
order routing algorithm is used in the interconnect. We collect a 
large set of available GPGPU workloads from Nvidia CUDA SDK 
[23], Rodinia Benchmark [24], Parboil Benchmark [25] and some 
third party applications. The workloads show significant diversity 
according to their kernel characteristics, divergence characteristics, 
memory access patterns, and so on.  

We use AVF as the basic metrics to estimate the structure soft 
error vulnerability. To estimate the power consumption, we use 
HSPICE to build the power model for the combinational logics 
related to ECC generation and checking, and modify the energy 
analysis tool CACTI [19] to calculate the power of SRAM-based 
structures such as the I-Buffer, registers, ECC table, the added 
request queue and waiting queue, and so on. We collect the 
statistics for instruction comparison, ECC generation and checking 
via the microarchitecture simulation, they are combined with the 
developed power model to obtain the dynamic and static power of 
the investigated structures. Our work is based on the 40nm 
processing technology which is applied in recently delivered 
GPGPUs. 

5. Evaluation 
5.1. Effectiveness of SAWP 

We compare SAWP with three schemes as follows: full-size 
ECC table (full_ECC) which assigns an ECC entry for each 
instruction; full-size SAWP (SAWP_fs) which applies a 12-entry 
ECC table in SAWP to cover all errors in the instruction buffer; 
and SAWP_min which applies 4-entry ECC table but simply 
evicting the ECC record with minimum number of instructions 
during the ECC entry allocation stage in SAWP. Figure 9 (a) and 
(b) show the instruction buffer AVF and power results, 

respectively, across the studied benchmarks while the four 
schemes are applied. The Round Robin warp scheduling policy is 
used in all the four techniques. Results are averaged across the 
SMs in each benchmark, and normalized to the baseline case 
without any soft error protection mechanism.    

As Figure 9 (a) demonstrates, full_ECC and SAWP_fs achieves 
the 0% AVF since they provide the protection for every 
instruction. Although SAWP does not fully protect the instruction 
buffer, it shows the strong capability of reducing the vulnerability. 
On average across the benchmarks, the instruction buffer AVF 
decreases 68% under SAWP compared to the baseline case. 
Especially, as shown in Figure 2, the I-Buffer suffers extremely 
high AVF (e.g. above 65%) in FWT and MT when no protection 
scheme is triggered, while our SAWP enhances the reliability up to 
90%. Note that the AVF reduction under SAWP varies across 
benchmarks. Because the instruction similarity in the instruction 
buffer differs in various workloads, it greatly affects the quantity 
of instructions can be protected by the ECC table. Take FWT as an 
example, all instructions in the I-Buffer are identical during 33% 
of the execution time; To the contrary, instructions exhibit weak 
similarity characteristic in BS, as a result, the vulnerability 
reduction between these two benchmarks differs significantly.  

 
(a) Instruction buffer AVF (full_ECC and SAWP_fs covers 

all errors, the AVF is 0% for those two mechanisms) 

 
(b) Normalized instruction buffer power  

Figure 9. The effectiveness of full_ECC, SAWP_fs, 
SAWP_min, and SAWP  

In addition, SAWP_min is able to reduce the instruction buffer 
AVF by 30%. It underperforms SAWP because the quantity of 
instructions under the protection decreases during the frequent 
entry eviction and allocation which downsizes the SAWP_min 
efficiency in fault tolerance. One may notice that the SWAP_min 
achieves a little lower AVF than SAWP in several benchmarks 
(e.g. BFS, LPS). Because they include a large number of branch 
divergences, there are increasing unique instructions in the I-
Buffer, the frequent eviction in the ECC table can help to capture 
more unique instructions and provide the protection.   

As shown in Figure 9 (b), on average, the SAWP_fs is able to 
reduce the I-Buffer power by 11% when compared to full_ECC 
whose power consumption is 23% higher than the baseline case. 
Because full_ECC requires ECC generation for each single 
instruction, and the full-size ECC table causes a higher area 
overhead. While SAWP_fs effectively reduces the ECC generation 
frequency since multiple instructions can share just one ECC 
record. SAWP_min outperforms SAWP_fs and further reduces the 
power consumption by 4%, it uses smaller ECC table and performs 
ECC generation and checking less frequently by scarifying the 
error coverage to some degree. SAWP achieves the lowest power 
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consumption in all the investigated protection mechanisms. It 
reduces the power consumption by 17% compared to full_ECC. In 
a conclusion, when compared to SAWP_min, SAWP intelligently 
chooses the appropriate instructions for soft error protection and 
achieve the win-win senario: reducing the ECC generation 
frequency and ECC table access times to save power, and 
meanwhile increase the error coverage.  

Various techniques have been proposed on warp scheduling to 
improve the GPGPU throughput, such as FAIR, First-Ready First-
Served, and two-level round-robin. Figure 10 (a) and (b) show the 
normalized instruction buffer AVF and normalized power under 
SAWP when those optimization schemes are enabled. The results 
of the case when the Round Robin policy is applied are shown in 
the figure as well for comparison purpose. As Figure 10 (a) shows, 
they introduce the positive effect to the I-Buffer vulnerability. 
Especially, the AVF reduces 81% under the impact of FAIR. FAIR 
issues instructions from various warps in a fair manner, it 
maintains the uniform progress among warps which enhances the 
instruction similarity and correspondingly, the error coverage. 
Furthermore, as shown in Figure 10 (b), the power consumption 
has little change under various warp scheduling policies. 
Therefore, the capability of SAWP on improving the instruction 
buffer vulnerability with little power consumption is not affected 
(and even enhanced) by the GPGPU performance oriented 
techniques.  

(a) Normalized instruction buffer AVF 

(b) Normalized instruction buffer power  
Figure 10. The effectiveness of SAWP when FAIR, First-Ready 
First-Served (FRFS), and Two-level round-robin (Two Level) 
are triggered 

5.2. Effectiveness of SHARP 
We compare SHARP with two register vulnerability 

optimization mechanisms: full ECC protection (Full_ECC) which 
introduces an additional table to keep the ECC for every single 
register, this technique has been applied in Nvidia Fermi GPUs 
[26]; register-to-register protection (RTRP) which leverages the 
free registers to keep the ECCs. Figure 11 (a-b) shows the 
normalized register AVF and power results when using the three 
techniques with a set of studied benchmarks. The results are 
normalized to the case without any protection mechanism.  

As Figure 11 (a) shows, Full_ECC provides the 100% 
protection to registers, and the AVF is zero. Both RTRP and 
SHARP improve the register reliability significantly. On average, 
RTRP and SHARP reduce AVF 37% and 41%, respectively, 
compared to the baseline case. The effectiveness of RTRP in fault 
tolerance is largely affected by the register utilization. For 
example, more than 90% registers are used in BP, there are few 

free registers to perform the ECC protection. As a result, RTRP 
gains limited vulnerability mitigation (around 5% AVF reduction). 
Worse, the registers suffer severe vulnerability challenge in the 
two benchmarks due to the heavy usage, and an efficient error 
protection mechanism is even more emergent. In BP, the shared 
memory is idle 80% of the entire execution time, and there are 
numerous off-chip memory transactions, SHARP intelligently 
leverages those characteristics and successfully achieves the high 
error coverage (AVF decreases by 75%).  

As shown in Figure 11 (b), on average, SHARP outperforms 
full_ECC by reducing the register power consumption from 124% 
to 106%. This is caused by the tremendous power and area 
overhead introduced in full_ECC. Full_ECC requires a hard 
structure to buffer ECCs, although a 7-bit ECC is able to protect 
the 32-bit register, the extra area overhead to the registers jumps to 
25%. More importantly, no matter the registers have short or long 
lifetime, full_ECC treats them the same and perform the ECC 
recording/checking whenever a register is accessed, it substantially 
increases the power consumption especially in benchmarks 
requiring numerous registers. As Figure 11 (b) shows, on average, 
the power consumption in RTRP is 2% higher than SHARP. 
Because the RTRP trigger frequency is determined by the RF 
utilization. It consumes large power on ECC generation and 
checking when RF is lightly used (e.g. KM).  

(a) Normalized registers AVF 
(full_ECC covers all errors, the AVF is 0%) 

(b) Normalized registers power 
Figure 11. The effectiveness of Full_ECC, RTRP, and SHARP 

Note that both SAWP and SHARP outperform other 
mechanisms compared in this study (e.g. Full_ECC) regarding to 
the trade-offs between power and reliability. We use a ratio 
between the power overhead and AVF reduction to describe how 
efficiently the technique can trade the extra power in gaining 
reliability optimization, and a lower value implies a better 
technique. SAWP trades 6% power overhead to gain 68% AVF 
reduction, the ratio between those two factors (i.e. 6%/68%=0.09) 
is much lower than that of Full_ECC, which is 23%/100%=0.23 
(Full-ECC requires 23% power overhead to achieve 100% AVF 
reduction). It indicates that SAWP is able to achieve higher AVF 
reduction compared to full_ECC given the same amount of power 
budget. In addition, although SHARP has fewer opportunities to 
trigger the ECC protection in computation-intensive benchmarks 
(e.g. BS, CP, MM), it also achieves better trade-off (i.e. 0.14) 
between power and reliability than that (i.e. 0.24) of full-ECC. 

6. Related Work 
There have been various studies on protecting vulnerability hot-

spots in CPUs via software/hardware-based redundancy. 
Montesinos et al. [11] explore ParShield which selectively protects 
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a subset of the registers by generating, storing, and checking the 
ECCs of only the registers with long lifetime. Blome et al. [12] 
proposes a register value cache that holds duplicates of live register 
values. Feng et al. [13] leverage the symptom based detection and 
selective instruction duplication to minimize user-visible failures 
induced by soft errors. Slick [14] avoids the redundancy for results 
predictable instructions to improve the performance whiling 
running redundant multithreading. However, they mainly target on 
CPUs and largely ignore the GPGPU architecture.  

Both hardware- and software-based redundancy has been 
proposed to optimize GPGPU vulnerability. Sheaffer et al. [5] 
explore the concept of the sphere of replication on GPGPU 
processors, and present a hardware redundancy-based approach to 
create a reliable GPU with no performance loss. Dimitrov [8] 
investigate three software approaches to perform redundant 
execution for GPGPU reliability. Checkpointing is a widely used 
protection mechanism in CPU processors, it has been applied to 
enhance GPGPU robustness as well. Maruyama et al. [9] propose a 
high-performance software framework to enhance GPU with 
DRAM fault tolerance. It leverages light-weight data coding for 
error detection and checkpointing for recovery. Solano-Quinde et 
al. [32] propose an application-level checkpoint scheme for 
GPGPU systems, and explore the computation-communication 
overlapping to reduce the checkpoint overhead. In our study, we 
develop the cost-effective protection schemes based on our two 
key observations on the GPGPU microarchitecture structures (i.e. 
instruction buffer and shared memory). Recently, Nathan et al. [33] 
develop Argus-G, it implements control flow, dataflow and 
computation checkers in the GPGPU stream multiprocessor for 
low cost error detection. Yim et al. [10] use a fault injection tool to 
analyze the error resiliency of GPGPU platforms, and strategically 
place customized error detectors in the source code of GPU 
applications to tolerate errors. Both the two schemes are 
orthogonal to our techniques. 

7. Conclusions 
With their strong computing power and improved 

programmability, GPGPUs emerge as highly-efficient devices for a 
wide range of parallel applications. Meanwhile, GPGPU with 
hundreds of cores integrated in a single chip are highly vulnerable 
to the soft error strikes. This work aims to protect GPGPU 
microarchitecture against soft errors. We find that two SRAM-
based structures (i.e. instruction buffer and registers) are prone to 
be the reliability hot-spots in the GPGPUs, and take advantage of 
the GPGPU microarchitecture characteristics to explore the cost-
effective protection techniques for them. We propose the 
similarity-aware protection (SAWP) scheme which leverages the 
instruction similarity to provide the near-full protection for the 
instruction buffer with little power and area overhead. We further 
find that the shared memory are significantly under-utilized, and 
propose shared memory to registers protection (SHARP) which 
leverages the idle shared memory to keep the registers ECCs. 
Experimental results show that both SAWP and SHARP have the 
strong capability in fault tolerance and meanwhile achieving the 
low power consumption. SAWP reduces instruction buffer AVF by 
68%, and SHARP reduces register AVF by 41% when compared 
to the case without any protection scheme. Moreover, SAWP 
(SHARP) is able to achieve similar AVF as the full ECC 
protection mechanism with 17% (18%) reduction on power. 
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