@ An “Over-The-Shoulder” Implementation

Marcia Ramos
Victor S. Frost

TISL Technical Report TISL-9770-14

Prepared for:
Defense Advanced Research Projects Agency/CSTO

‘ Research on Gigabit Gateways
= AARPA Order No. 8634
Issued by EDS/AVS under Contract #F19628-92-C-0080

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. government.

May 1994 ;
[’HH Telecommunications and Information Sciences Laboratory
\ The University of Kansas Center for Research, Inc.

/ TISL\ 2291 Irving Hill Drive Lawrence, Kansas 66045

An “Over-The-Shoulder” Implementation

~ May 5, 1994

Marcia Ramos
Victor S. Frost

TISL Technical Report TISL-9770-14

Sponsored by:
Defense Advanced Research Projects Agency/CSTO
Research on Gigabit Gateways
AARPA Order No. 8634
Issued by ESD/AVS under Contract #F19628-92-C-0080

Table of Contents

Abs&act .. ettt et sae s b et bn ii
1. INErOAUCHION ..ttt b ettt st st ne s bt en 1
2. Software Algorithm & Implementation ...ttt 2

2.1, The User INterface......ccocoeuiiererrmnenrreeerieeerireenese et ssesesesesnssesssosssssses 2

2.2, Server/Client Communicationsccoeuerereececreviriisenenersisrieseesesisssssesseses 4

2.3, The Server Code.....cuieriinnreeienrreetteeseniseeeissesesse s sessssesssesnsnssesssssnes 5

24, The Client Code......ccooumriremmnneneeeireeincistsisises e seesessasisssas s ssssssssssesesesssss 7
3. System ReqUIrements.........oemiiiiininciiiinicciteee i seees 9
4. How To RUn OTS ...ttt sacssesssnssssesssstessasssaens 10
5. Conclusions & Future Directions................... rttsererrersantsss st snsasasantsuet st e nasnarnneas 11
6. REfEIEINCES......cceenieieiiieeetiectrte vttt sttt ettt s sae s st aae R 12
APPENAIX A oot bbbt bbb e e 13
APPENAIX Bt e e e e 14
APPENAIX C.orrriiiitr sttt st 15
APPENIX Db 16

Abstract

The objective of this paper is to provide an overview of the implementation of an
“Over-The-Shoulder” application. It describes the software and graphics issues
involved in developing this application as well as the system requirements and
how to run the program. The “Over-The-Shoulder” was designed to provide remote
users in the MAGIC testbed with a view of the terrain while it is rendered by
TerraVision. The TerraVision application is a terrain visualization of a landscape
with superimposition of vehicles and features of a battlefield.

ii

1. Introduction

The “Over-The-Shoulder” (OTS) software application is a client/server
implementation of an interactive visualization of terrain images displayed by
TerraVision [4]. The OTS permits a client at a remote location to view the terrain
displayed by TerraVision in the server site. Several clients can run OTS at the same
time and access the same images displayed by TerraVision. The software has been
implemented for the DEC Alpha workstation, but it is portable to other
environments if the software requirements are met. These requirements are
described in Section 3.

The OTS displays both a low-resolution image of the full terrain viewed by
TerraVision and a high-resolution image of a selected area of the terrain. These
images are displayed in two separate windows, called “LowRes Window” and
“HighRes Window.” The windows’ sizes are set to 512x512 and are resizable
according to the user’s demand. The windows can be resized with the mouse just
like any other window. The area to be viewed in high resolution is selected when
the user clicks the left-most mouse button in the low-resolution window display.
The cursor inside the LowRes window is viewed as a box that corresponds to the
area selected by the user. By clicking the mouse button inside the LowRes window,
the user selects the upper-left coordinates of the HighRes area to be displayed.

OTS contains a user interface that allows the users to select the server host that is
running TerraVision, OTS’s client site, the window displayed by TerraVision that
contains the image to be viewed by OTS, and other relevant information such as the
LowRes Sample Rate and the LowRes Frame Rate. The LowRes Sample Rate is a
user-defined parameter that indicates the sampling rate of the low-resolution image.
The default sampling rate is 2, meaning that the low-resolution image is taken from
every other pixel of the full terrain displayed in the TerraVision window. The
LowRes Frame Rate.indicates the time in seconds between each low-resolution
image update.

The low-resolution image is therefore updated at a rate specified by the user, while
the high-resolution image is constantly updated according to the user’s selection of
the LowRes area to be viewed in high resolution. If an area hasn’t been selected yet
by the user, the HighRes image is taken out of the previous coordinates. The default
upper-left coordinate is (0, 0).

The OTS software was implemented in C using Xlib [1, 2] for the graphics and Motif
[3] for the user interface. It is divided into three main programs: the user interface,
the server code, and the client code. The algorithm and software implementation of
the OTS software application are explained<n detail in Section 2. Section 3 contains
OTS’s system requirements, such as the libraries used in the current
implementation. Finally, Section 4 explains how to run OTS, and Section 5 closes
with some conclmsions and possible directions for later OTS implementations.

2. Software Algorithm & Implementation

The OTS software application is divided into three main parts, namely:

. User Interface;
° Server; and
. Client.

There are also other support modules, such as an adaptation of the xwininfo
application in the XWindows system. All the programs were designed in a modular
and user-friendly fashion, and they are fully documented to help the user in
understanding the code. The programs were written in C using the Xlib functions
for the graphics functions and the Motif functions for the user interface features.

The client/server communication is done via TCP/IP. It was designed to achieve the
maximum frame rate possible with full utilization of the network and graphics
resources. These three components were integrated into a main program that
executes the user interface functions and then forks to run the client code in the
local machine and the server remotely in the server host entered by the user. The
server code thus runs in the same machine as the TerraVision application. The
design and implementation of each of these programs is explained in detail in the
following subsections.

2.1. The User Interface

The user interface was designed using Motif functions. It contains a simple menu
with the self-explanatory “Quit” and “Help” options as well as an option called
“File.” In this menu option, there is a submenu titled “OTS View.” This option is
selected to start the dient/server communications culminating in the display of the
terrain images on the screen.

Inside the main window of the user interface, there are five user interaction boxes
that the user fills with the appropriate inputs to OTS. These boxes are:

Server Host;

Client Host;

TerraVision Window Name;
LowRes Sample Rate; and
LowRes Frame Rate.

When the user runs the program, these boxes as well as the main menu will appear
on the screen with the cursor set in the first box, i.e., the Server Host box, so that the
user can start entering the inputs. The Server Host is the address of the machine
Tunning the server and TerraVision, for example, onyx-atm.bcbl.magic.net. The

2

client host is the address of the machine where the OTS user interface and client are
running, for example, mauchly.ukans.magic.net.

The third box is for the name of the window displayed by TerraVision that contains
the image to be viewed at the client site. Currently, two windows are of interest to
the user. They are called “Out The Window View” and “Overhead View.” By typing
one of these names in the user’s interaction box, OTS will get the low-resolution
and high-resolution images from this window.

The other two boxes concern the low-resolution image’s parameters, namely the
sample rate and the frame rate. As mentioned before, the sample rate indicates the
sampling of the low-resolution image. A sample rate of 2 indicates that the low-
resolution image is taken from every other pixel of the terrain image displayed in
the TerraVision window. The other parameter, the frame rate, indicates the time in
seconds between each update of the low-resolution image.

After entering all the correct inputs, the user then can select the “OTS View” option
in the file menu to start visualizing the images. All the functions described here
were implemented with simple Motif functions. The user interface code starts just
like any other Motif application by initializing the X toolkit using the function
XtVaApplnitialize. It then creates the main window that contains the menu and
user interaction boxes, creates the menu, and creates the boxes. The boxes were
created using the “rowcol” widgets defined by Motif, which facilitated the placement
and alignment of the boxes on the screen as well as the grabbing of the user’s inputs.

Each box is associated with a callback function that gets the appropriate input
entered by the user. Initially, the cursor is placed in the first box, i.e., the Server Host
box. When the user enters the name of the server host and presses “Return” to
enter the next input, the X toolkit passes control to the callback function of the
Server Host and gets the name of the server host entered by the user. This process
repeats with all the other user interaction boxes.

When all inputs are entered, and the user is ready to start visualizing the images,
the user then can select the “OTS View” option in the “File” pull-down menu. Just
like the user widgets, each option in the menu, “Quit,” “File,” and “Help,” is
associated with a callback function that will perform the operations desired. The
“Quit” callback function contains a safety widget that pops up an “Are you sure?”
message to the user in case this widget was called at an inappropriate time. The help
widget currently contain only one message but can be expanded to display a full help
for the whole OTS code.

The file callback function is called when the “OTS View” option is selected. This
callback function, «called file_cb, is the most important function of the program, for
it is when this function is called that the image visualization starts. The function’s
implementation is quite simple: it contains a fork() to the client process and the
servier process, with the server as the parent and the client as a child. The server is

run remotely at the server host location entered by the user by doing an execl
function call. The client is run by just calling the function ClientSide that
implements all the client operations. Notice that the client executable code needs to
reside on the client host while the server executable code needs to reside on the
server host. When calling the server remotely using the execl function, it is
necessary that the appropriate path where for server code is given.

The next section explains in detail the client/server communications.

2.2. Server/Client Communications

The server/client communications is done using TCP/IP. When the server starts
running remotely at the server host, it allows connections to all the clients and
waits until the client program establishes a connection to the server. The connection
is done through the ports 21000 as the TCPServerPort and 22000 for the
TCPClientPort. When running more clients, the client ports need to be different
from one another. The TCP operations for the server were implemented in the
function called CreateTCPSocket inside the server program.

The client starts by allowing connections from all servers, implemented in the
function CreateTCPClientSocket inside the client code, and by using the connect
function to establish the communications link with the server. This was
implemented in the function called CreateTCPServerSocket inside the client code.

Once this communication link is established between server and client, the OTS
visualization process starts. Several implementations were considered before
adopting the current approach of using the X functions XGetImage and XPutImage
to grab and display the images at the client site. This approach was adopted after
trying UDP to transmit the image data, which caused a considerable loss of data, and
after using TCP/IP to do the data transmission. The latter approach, although being
more reasonable than giving full control to the X functions, was discarded due to
lack of interaction with the TerraVision application. In order to do the data
transmission using TCP/IP, it is necessary that the data be grabbed directly from the
frame buffer of the Onyx machine, thus requiring some coding inside the
TerraVision application to pass the location of the data in memory to the OTS
application. The X approach was then adopted to avoid this interaction and to test
the capabilities of the X functions to handle this problem. After testing the OTS this
approach proved to be workable at the moment. Not only did it not require any
extra coding inside the TerraVision application, but it also resulted in fairly
reasonable speeds when tested over the ATM link of the MAGIC testbed.

With this approach, the server starts by doing an XGetImage of the low resolution
image being displayed by TerraVision and an XPutlmage to display the image inside
the LowRes window created by the client code. In order to do an XGetImage, the
server needs to get TerraVision’s window information. This is done by using an

adaptation of the xwininfo X application. With only the window name, this
function returns the window ID as well the size information required by XGetImage
to function properly. For XPutImage to work, the server needs the window IDs of
the LowRes window and the HighRes window created by the client. This is done
inside the client code right after the windows are created by sending the window IDs
through the TCP socket created earlier.

The server then samples the low-resolution image to display it in the LowRes
window according to the LowRes Sample Rate entered by the user. The server then
updates the high-resolution image, constantly taking care of the user’s requests for a
specific area of the screen. As mentioned in Section 1, the user selects this area by
just pressing the left-most mouse button, thus giving the upper-left coordinates of
the sampling area. The user has a feeling for the area being selected as the cursor
inside the LowRes window was transformed into a 64x64 box (the maximum cursor
size allowed by a DEC3000 Alpha workstation). This approach was preferred over
drawing rubber-band boxes each time so that the speed in processing the images is
maximized.

The server then updates the high-resolution image according to the coordinates
selected by the user. If no requests have been made, the server simply assumes the
previous coordinates selected in order to update the image (the default initially is
(0,0) for the upper-left coordinates). The images are updated by just doing an
XPutImage to the corresponding window. After the LowRes frame time entered by
the user has passed, the server code updates the low-resolution image. It then
continues to update the high-resolution images, constantly taking care of the client’s
requests.

The next subsections explain the server code and the client code implementations in
more detail.

2.3. The Server Code

The server code contains 5 main functions as follows:

CreateTCPSocket;
GetServerlmage;
SampleLowResImage;
GetHighResImage; and
ServerSide.

The CreateTCPSocket function, as explained in the previous subsection, handles the
TCP operations required to establish communications with the client program. It
uses simple socket functions to create the TCP socket, and it waits for a connection
from a client by doing a listen on the socket. The CreateTCPSocket function was
designed to allow connections from all clients as long as the ports have been defined

properly (one port for each different client).

The GetServerImage simply does an XGetlmage on the appropriate window name
entered by the user. This function grabs the whole image being displayed in the
TerraVision window. After the image data is grabbed, the image is sampled
according to the LowRes Sample Rate entered by the user. This was implemented in
the SampleLowRes function. The sampling is done by using the X functions
XGetPixel and XPutPixel to create the low resolution image data structure from the
whole image grabbed from the TerraVision window. The default window size is
512x512, so the image will be sampled to fit this window. If the image is smaller than
512x512, the user can easily resize the window by using the mouse. The image is
then displayed by doing an XPutImage to the LowRes window being displayed at the
client site.

The next function, GetHighResImage, gets the high-resolution image from the low-
resolution image displayed at the LowRes window according to the latest
coordinates selected by the user. The mapping from the LowRes to the HighRes
window is done so that the high-resolution image fits a 512x512 window, making
sure that the upper-left coordinates will not extrapolate the 512x512 size. The
function gets the image with an XGetImage and displays it in the HighRes window
using an XPutImage. The high-resolution frame rate is also calculated in this
function. The frame rate is calculated by getting the frames displayed over the time
period specified by the user as a command line argument.

The ServerSide function is the main function of the server code; it controls all the
communications with the client and calls the functions described above. The
function starts by establishing the connection with the client and by getting the
TerraVision window ID using the function xwininfo. It then opens a display
connection to the client so that the XPutImage can be executed properly. The server
then gets the LowRes window ID and the HighRes window ID by receiving this
information from the TCP socket. It was necessary to change the byte order of the IDs
since the byte order of the Onyx machine (TerraVision) is not the same as the byte
order of the Alpha workstation being used as the client site.

The server code then loops indefinitely, listening to the user’s requests for high-
resolution images and calling the functions described above to display the images.
Updates of the LowRes image are controlled in this loop by checking the timing
between each frame. -

The next subsection explains the client code in more detail.

2.4. The Client Code
The client code contains 7 main functions as follows:

CreateWindow;
CreateTCPServerSocket;
CreateTCPClientSocket;
SendRequest;
HandleEvents;
HandleHighResEvents; and
ClientSide.

The CreateWindow function does the graphics set-up for the display of the images.
It creates two 512x512 windows, one for the LowRes display and the other for the
HighRes display. Each window is associated with a GC (graphics context),
foreground, and background colors. The colormap created for these windows is a
simple gray-scale colormap that can be improved to adopt full color in future
implementations.

The CreateTCPServerSocket and CreateTCPClientSocket functions are used for the
TCP communications with the server. The second one allows connection from any
server, and the first function is called later to establish the connection with the
server code via the ports 21000 and 22000, as described earlier. These functions were
implemented with simple functions defined in the socket libraries.

The SendRequest function handles the transmission of image requests to the server.
Each request packet contains the image type (1 for LowRes and 2 for HighRes), the
upper-left coordinates of the image requested, and the height and width of the box
displayed in the LowRes window, in this case, 64x64. The height and width were
added to the data structure in case this box is implemented later as resizable rubber-
band rectangles. The RequestPacket was defined in the include file called Packets.h.
The function takes the image type, the upper-left coordinates, and the height and
width of the box as arguments, and constructs the RequestPacket that is sent through
the TCP socket using the send command.

The HandleEvents function requests the initial low-resolution image to be displayed
in the LowRes window and then calls the HandleHighResEvents function that
controls all user requests for the high-resolution image. The HandleHighResEvents
function consists of a normal X event loop containing Expose, ButtonPress,
ButtonRelease, MotionNotify, and default events. It loops, listening to requests in
the queue and processing the requests in the order they occur. Every time a mouse
button is pressed, the ButtonPress event is called, and the coordinates selected by the
user are grabbed. They are then sent to the server using the function SendRequest.

The ClientSide function, just like the ServerSide function described earlier, is the
main function of the client code; it also controls all the communications with the

server and calls the functions described above. It starts by establishing the TCP
connection with the server and initializing the graphics set-up via the
CreateWindow function. It then defines the cursor as a 64x64 box to represent the
area in the LowRes window selected by the user to be displayed in high resolution.
The function then loops forever, processing the events generated by the user.

The next section describes the programs used in the OTS implementation, where
they are residing at the moment, and all the libraries used in the implementation.

3. System Requirements

The current version is set up to run the server code remotely on an Onyx at the
BCBL. In order to run OTS with another server, a copy of the server code needs to
reside in the new server host and the path to this code changed in the execl function
of the main program (OTS.c). The following list contains all the programs used in
the OTS implementation:

OTS.c Main program with the user interface and calls to the server and
client functions (Appendix A)

OTS_client.c Client code (Appendix B)

OTS_server.c Server code (Appendix C)

Packets.h RequestPacket data structure

xwininfo.h xwininfo application code

dsimple.c Functions used in xwininfo

makeserver Make file for the server code (Appendix D)
makeots Make file for the client code (Appendix D)

The current versions of the operating system, Xlib, and Motif are listed below:

OS OSF/1v.20
Xlib X release 5
Motif OSF/Motif 1.1

A brief description on how to set up a demo between KU and BCBL is given in the
next section. E

4. How To Run OTS

To run OTS at KU, go to the directory containing the application and type “OTS.”
OTS can take two arguments. The second one, “-d,” is a debug option, and the first
argument is the time interval for the calculation of the HighRes Frame Rate.

The user will see a blue window with the main menu and the user interaction
displayed at his/her client site. The user should then enter the parameters requested
by the OTS program and select the “OTS View” option in the “File” menu to start
visualizing the images. Again, to select a HighRes area of the low-resolution image,
the user just needs to press the left-most mouse button. In entering the parameters,
the user should be careful to give the host names correctly.

The next section gives some recommendations for future OTS implementations.

10

5. Conclusions & Future Directions

The OTS was successfully implemented and tested over the ATM link between KU
and BCBL. The high-resolution frame rates were about 2 frames/sec, which
corresponds to an application data rate of 4.2 Mbps. Note that the maximum rate at
which frames can be written on the client workstation is about 15. Future
implementations can look into ways of improving this. The main limitations are
due to the X functions in handling the display and grabbing of the images and the
rate at which frames can be written at the client workstation.

One approach to be tested in the future is to use the frame buffer of the SGI machine
to get the image data rather than using the XGetlmage function. Another added
feature to OTS is an improved colormap displaying color images. Future
implementations can also look into ways of displaying the HighRes Frame Rates
into boxes in the main window display rather than as just standard output to the
screen.

Overall, the OTS code achieved its main goals, but it can certainly be improved in

future implementations attending the recommendations mentioned in this
document.

11

[]
[
3]
[4]

6. References

“Xlib Reference Guide,” O'Reilly & Associates, 1991.

“Xlib User’s Guide,” O’Reilly & Associates, 1991.
“Motif Programming Guide,” O’Reilly & Associates, 1991.

Leclerc, Y.G., and S.Q. Lau, “TerraVision: A Terrain Visualization System,”
Technical Note 540, SRI International, Menlo Park, California, March 1994.

’ TISL Technical Report 9770-14; “An Over-The-Shoulder Implementation”
Appendix A

5: Over the Shoulder Application :5
/* The University of Kansas ’ */
/* Telecommunications and Information */
/* Sciences Lab */
/* */
/* Module: OTS.c */
/* Author: Marcia G. Ramos */
/* Date: April 02, 1994 */
/* Version: 2.0 */
/% —— e e *x/

/* C libraries */

#include <stdio.h>
#include <string.h>

/* X libraries */

#include <X11/Xlib.h>
#include <X11/Xutil.:h>
#include <X1l1/Intrinsic.h>
#include <X11/StringDefs.h>

/* Motif libraries */

#include <Xm/LabelG.h>
#include <Xm/RowColumn.h>
$#include <Xm/Text.h>
$include <Xm/TextF.h>
$#include <Xm/MainW.h>
#include <Xm/MessageB.h>
#include <Xm/Label.h>
#include <Xm/FileSB.h>
#include <Xm/SelectioB.h>

/* User interaction boxes */

char *text labels{] = {"TerraVision Server:", "Client Host:",
- "TerraVision Window:",
"LowRes Sample Rate (2, 4, or 8):",
"LowRes Frame Rate:"};

char *text widget[] {"HighRes Frame Rate:", "HighRes Bit Rate:"};

/* Help message */

#define help msg "Oops! You’re in trouble!”
Ly
/* Global variables */
?
Widget toplevel, main_w, w;
char *ServerHost;- /* User inputs */ .
char *ClientHost; :
char *WindowName;
char *LowResSample;
char *LowResFrame;
int fork (void) ;

int dbug = 0;

static Widget dialog;
if (!dialog)

exit (0);
file cb ()
S et e e e e e
5* This is the callback function for the file menu
T e o e e e im . e e . ot i i o (o S S e . . Y S B T S S PR S S T e s P S U P o S S S S e S
static Widget dialog;
Widget popdialog;
Arg args([3];
XmString msg;
if (dbug ==

)
printf ("Start!\n");
msg = XmStringCreateSimple ("HighRes Frame:");

if (dbug == 1)
printf ("Start!\n"):

/* Select "View OTS" and call Client program */
if (tdialog)
{

if (dbug == 1)
printf ("View!\n");

/* Run server on appropriate host */

if (dbug == 1)

{
printf ("ServerHost = %s\n", ServerHost):
printf ("ClientHost = %s\n", ClientHost):
printf ("LowResSample = %$s\n", LowResSample);
printf ("LowResFrame = %$s\n", LowResFrame);

}

if (fork() == 0) '

if (dbug == 1)
printf ("parent!\n");
ClientSide (ServerHost):;
}
else

{
if (dbug == 1)
{

printf ("child!\n"):;

printf ("host = %s\n'", ServerHost):
printf ("window name = %s\n", WindowName);

execl ("/usr/bin/rsh", ServerHost,
"/usr/people/mramocs/OTS_server",
ServerHost, ClientHost, WindowName, LowResSample,
LowResFrame, 0);

/* __ */
void help cb ()
{ £ T —— . - ——— */
;* This is the callback function for the help menu. *;
b | F I —— ———— *
static Widget dialog:;
Arg . args{l]:
XmString help message;
/* Display help message */
if (dbug == 1)
printf ("Help!\n"):
if (!dialog)
{
if (dbug == 1)
printf ("Help---\n");
help message = XmStringCreateLtoR (help msg, XmSTRING_ DEFAULT_CHARSET);
XtSetArg (args[0], XmNmessageString, help message):
dialog = XmCreateInformationDialog (toplevel, "help-dialog", args, 1l):
}
XtManageChild (dialog):
XtPopup {(XtParent (dialog), XtGrabNone):;
}
e */
void ServerHost_cb (widget, client_data, cbs)
Widget widget;
XtPointer client_data;
XmRowColumnCallbackStruct *cbs;
{ J e e *x /
/* This is the callback function for each user interaction box */
/*- 2 e */a
Widget pb = cbs->widget; ™
?
if (dbug == 1)
printf ("calles!\n"); -~
ServerHost = XmTextGetString. (widget);
if (dbug == 1)
{
printf ("ServerHost = %s\n", ServerHost):
printf ("%s: %d\n", XtName (pb), cbs->data):
}
}
JF e e e e */

void ClientHost_cb (widget, client_data, cbs)

Widget widget;
XtPointer client data;
XmRowColumnCallbackStruct *cbs; T
{ [/ * e et e e ——————— e */
;* This is the callback function for each user interaction box */
K e e e e e e e e e e e e e e m i e i o e ————————e e */
Widget pb = cbs->widget;
if (dbug ==
printf ("calles!\n"):;
ClientHost = XmTextGetString (widget):
%f (dbug == 1)
printf ("ClientHost = %s\n", ClientHost);
printf ("%$s: %$d\n", XtName (pb), cbs->data):;
}
2 ——— - o o e e e et e e e e e e e e e e e e o
void WindowName cb (widget, client data, cbs)
Widget widget;
XtPointer client_data:;
XmRowColumnCallbackStruct *cbs;
{ /*___....__..______......._______._.._._.._'_ _________________________________ */
;* This is the callback function for each user interaction box */
K e e et . o e e it . e S o s S G i it A S S > " Sl S T " " T T s S T > YD T A e e S e T S o S */
Widget pb = cbs->widget;
if (dbug == 1)
printf ("calles!\n");
WindowName = XmTextGetString (widget);
if (WindowName == "Qut The Window View")
WindowName = "Out The Window View";
if (WindowName == "QOverhead view")
WindowName = "Overhead View";
%f (dbug == 1)
printf ("WindowName = %s\n", WindowName);
printf ("%s: %d\n", XtName (pb), cbs->data);
3
}
[K e e
void LowResSample cb (widget, client_data, cbs)
Widget widget;
XtPointer client_ data;
XmRowColumnCallbackStruct *cbs; ‘ s
{ /* —————————————————————— e e e e e e ————— —————————————— k/
;* This is the callback -function for each user interaction box */
L i Lt i T ——— x /

Widget pb = cbs->widget;

if (dbug == 1)

printf ("callesi\n");
IowResSample = ¥niTextGetString (widget);
if (dbug == 1)

printf (™text = %s\n", LowResSample);
if (dbug == 1)

printf ("%$s: %d\n", XtName (pb), cbs->data);

/* __ */
vgid LowResFrame_ cb (widget, client_data, cbs)
Widget widget;
XtPointer client_data;
XmRowColumnCallbackStruct *cbs;
¢ e T T —— *x/
;* This is the callback function for each user interaction box */
K e m e e e e e A e i e e e o e */
Widget pb = cbs->widget;
if (dbug == 1)
printf ("callest\n");
LowResFrame = XmTextGetString (widget):
if (dbug == 1)
printf ("text = %s\n", LowResFrame);
if (dbug == 1)
printf ("%$s: %d\n",. XtName (pb), cbs->data):;
}
K e e e e e e e e e */
main (argc, argv)
int argc;
char *argv(];
{ O R L S SR */
/* Main routine - controls the interface and callbacks *;
__ *
Widget menubar, widget, pane, rowcol;
XtAppContext app;
char buf[8];
int i;
XmString file, quit, help, ots, about;
Arg args(10], targs([9];
int n;
void file cb(), help_cb(};
char *text;
char HostName[64];
char ifbug; b
/* Get debug info */
if (argv([2]) B
{ .
printf ("BUG SET'\n"); ’
dbug = 1; ’ ;

}
/* Initialize toolkit =/

if (dbug == 1)
printf ("toplevel!\n");

toplevel = XtVaAppInitialize (&app, "Demos", NULL, O,
&argc, argv, NULL,
XmNwidth, 1268, XmNheight, 1024, NULL);

/* Create main window */

if (dbug == 1)
printf ("main_window!\n");

main_w = XtVaCreateWidget ("main_w"; xmMainWindowWidgetClass,
toplevel,
NULL) ;

/* Create a menu bar with three items */

if (dbug ==
printf ("Create string!\n"):

quit = XmStringCreateSimple ("Quit");
file = XmStringCreateSimple ("File"):;
help = XmStringCreateSimple ("Help"):;
if (dbug ==

)
printf ("menubar!\n");

menubar = XmVaCreateSimpleMenuBar (main w, "menubar”,
XmVaCASCADEBUTTON, quit, ‘Q’,
XmVaCASCADEBUTTON, file, ’F’,
XmVaCASCADERUTTON, help, ‘H’,
NULL) ;

if (dbug == 1)
printf ("free file!\n"):;

XmStringFree (file);
/* Tell the menubar which button is the file button */

if (widget = XtNameToWidget (menubar, "button_2"))
XtvaSetvValues (menubar, XmNmenuHelpWidget, widget, NULL);

/* Quit menu */

XmvaCreateSimplePulldownMenu (menubar, "quit _menu", 0, quit cb,
XmVaPUSHBUTTON, quit, ’‘Q’, NULL, NULL,
NULL) ;

XmStringFree (quit);:

/* File menu */

ots =.¥mStringCreateSimple ("OTS View"); .

XmvaCreateSimplePulldownMenu (menubar, "file menu", 1, file cb,
XmVaPUSHBUTTON, ots, "O", NULL, NULL,
NULL) ;

XmStringFree (ots); B

Bald

/* Help menu */

XmvVaCreateSimplePulldownMenu {(menubar, "help menu", 2, help cb,
e XmVaPUSHBUTTON, help, 'H’, NULL, NULL,
NULL) ;
XmStringFree (help):

XtManageChild (menubar):;

/* Create widgets for text entry */

rowcpl = XtVaCreateWidget ("rovcol", xmRowColumnWidgetClass,
main_w, XmNpacking, XmPACK_COLUMN,

XmNnumColumns, XtNumber (text labels),
XmNorientation, XmVERTICAL,

/* Interaction boxes */

XmNadjustLast, False,
XmNisAligned, True,
XmNresizeWidth, True,
XmNwidth, 20,
XmNspacing, 5,
XmNentryAlignment, XmALIGNMENT_BEGINNING,
NULL) ;

for (i = 0; i < XtNumber(text_labels); i++)

XtVaCreateManagedWidget (text labels([i], xmLabelWidgetClass,

/*sprintf (buf,

“text %d4",

rowcol, NULL);
iy:*/

w = XtVaCreateManagedWidget (buf, xmTextFieldWidgetClass, rowcol, NULL)

/* Get

switch
{
case
case
case
case
case

}
XtAddCallback (w,

}

appropriate user’s input */

(1)

WNhHO

XtaAddCallback
XtAddCallback
XtAddCallback
XtAddCallback
XtAddCallback

(w,
(w,
(w,
(w,
{w,

XmNactivateCallback,
XmNactivateCallback,
XmNactivateCallback,
XmNactivateCallback,
XmNactivateCallback,

XmTRAVERSE_NEXT TAB_GROUP) ;

/* Wrap up Xt */

XtManageChild (rowcol);
XtManageChild (main w);

XtRealizeWidget (toplevel);

XtAppMainLoop (app) ;

ServerHost cb, i+l);
ClientHost cb, i+l);
WindowName cb, i+l);
LowResSample cb, i+l)
LowResFrame_cb, i+l};

XmNactivateCallback, XmProcessTraversal,

‘ TISL Technical Report 9770-14; “An Over-The-Shoulder Implementation”
Appendix B

J X e e e e
5: Over the Shoulder Application
/* The University of Kansas
/* Telecommunications and Information
/* Sciences Lab
/*
/* Module: OTS_client.c
/* Author: Marcia G. Ramos
/* Date: April 14, 1994
;* Version: 2.0
T et e o s i i e e e e " o S e . - o o S T " ——————— T = ——— = e S — — —

/* C libraries */

#include <stdio.h>
#include <string.h>

/* X libraries */

#include
#include
#include
#include

<X11l/Xlib.h>
<X11l/Xutil.h>
<X11/Intrinsic.h>
<X1ll/StringDefs.h>

/* Motif libraries */

#include
#include
$#include
#include
#include
#include
#include
#include

/* For

#inclﬁde

<Xm/LabelG.h>
<Xm/RowColumn.h>
<Xm/Text.h>
<Xm/TextF.h>
<Xm/MainW.h>
<Xm/MessageB.h>
<Xm/Label.h>
<Xm/FileSB.h>

debug */

<errno.h>

/* System libraries */

#include
#include
#include
#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<sys/ioctl.h>
<netdb.h>
<netinet/in.h>
<signal.h>
<time.h>

/* Data structures used */

#include

"Packets.h"

/* Window structure */ o

typedef union

window_id

Window id:
char wid([8]:;

} window_struct;
/* Bitmap file for drawing box cursor */
#include "64cursor.xkm™

/* Port numbers */

#define TCPServerPort 21000
#define TCPClientPort 22000
/* __ */
/* Define global variables */
Display *display; /* X disp */
window struct LowResWindow; /* Low resolution window */
window_struct HighResWindow; /* High resolution window */
int screen;
XEvent event; /* Event struct for LowRes images */
XEvent event_high; /* Event struct for HighRes images *,
unsigned long foreground;
unsigned long background;
Cursor cursor;
XColor color;
Colormap colormap;
XImage *ximage; /* Image struct for LowRes image */
XImage *ximageH; /* Image struct for HighRes image */
Visual *yvisual;
GC gc2, gc3; /* Graphics contexts */
int xdim = 512; /* Image dimensions */
int ydim = 512;
Data data; /* Packet transmitted */
unsigned char LRImage[512*512];
unsigned char HRImage[512*512];
int TimeQut;
int RequestTime = 0;
void handler () :;
void handle_requests{():
int done = 0;
int doneH = 0;
/* Socket variables */
struct sockaddr 1n TCPServerAddr:;
struct sockaddr_in TCPClientAddr;
int TCPSocket;
/* Request image structure */
ImageRequest RequestPacket;
/* Timing variables */ ;
long start;
long timediff;
FILE *£d;
/*###############################}#######################*/
MAKE THIS EQUAL TO 1 FOR DEBUG */
/*###*/
int debug = 0;
f—_ */

void handler ()

{
/* ___ */

5* Sets timeout variable when alarm goes off */

- o o it e e . i e e e 0 e S o A . o . S e o e 2 o e T

/* It will timeout when the recvfroem is sleeping */

TimeOut = 1;

[K e e e
void handle requests ()
{ /* ___ */
/* Sets timeout variable when alarm goes off */
| Jp—— -— - ————
RequestTime = 1;
}
[R e e e —————————————
void CreateWindow ()
{
2 S — ————x/
/* Creates window and does the graphics set up *5
__ *
char *DisplayName = NULL;
char *WindowName = "Low Resolution Image";
char *WindowNameHigh = "High Resolution Image":
unsigned int width, height;
int i;
XWindowAttributes wattr;
XGCValues values;
/* Connect to server */
if (dewug =
printf ("cllent Connect to display...\n");
if ((display = XOpenDisplay (DisplayName)) == NULL)
{
fprintf (stderr, "client:Could not open display! \n");
exit (1):
}
/* Create simple windows */ 3

screen = DefaultScreen (d&isplay);
background = BlackPixel (display, screen);
foreground = WhitePixel (display, screen);

/* Low resolution window */

if (debug = 1)
printf ("Open LowRes window\n");
LowResWindow.id = XCreate&mpleWindow (display,
DefaultRootWindow (display),
80, 200, 512, 512, O,
foreground, background);

if (debug == 1)))
printf ("LowResWindowID = %#x \n",. LowResWindow.id);

XStoreName (display, LowResWindow.id, WindowName);
/* High resolution window */

if (debug == 1)
printf ("Open HighRes window\n");
HighResWindow.id = XCreateSimpleWindow (display,
DefaultRootWindow(display),
650, 200, 512, 512, O,
foreground, background):;

if (debug == 1) .
printf ("HighResWindowID = %#x \n", HighResWindow.id):

XStoreName (display, HighResWindow.id, WindowNameHigh):
/* Select event types wanted */

if (debug == 1)
printf ("Select events...\n");
XSelectInput (display, LowResWindow.id, ExposureMask | ButtonPressMask |
ButtonReleaseMask | ButtonMotionMask |
PointerMotionHintMask);

/* Create GC for each window */

if (debug == 1)

printf ("CreateGCs\n");
gc2 XCreateGC (display, LowResWindow.id, 0, 0);
gc3 XCreateGC (display, HighResWindow.id, 0, 0);

/* Adjust background and foreground pixels for each window */

if (debug == 1)

printf ("Adjust background...\n"):
XSetBackground (display, gc2, background);
XSetForeground (display, gc2, foreground):
XSetBackground (display, gc3, background):
XSetForeground (display, gc3, foreground);

/* Coexte the visual as the default ‘visual */
visual = DefaultVisual (display, screen);
/* Display windows */

if (debug == 1)

printf ("Display windows...\n"):
XMapRaised (display, LowResWindow.id):
XMapRaised (display, HighResWindow.id);

/* Create colormap for 8'bitgdisplay */

if (debug == 1)
printf ("Colormap..\n"):
colormap = XCreateColormap {(display, RootWindow (display, screen),
visual, AllocAll);
if (debug == 1)
printf ("aftger Colormap. .\n"):

for (i = 0; i <= 255; i++)
{

color.pixel = i;

XQueryColor (display, DefaultColormap(display, screen), &color);
color.flags = DoRed | DoGreen | DoBlue;

XStoreColor (display, colormap, &color);

}
/* Scale colors */

if (debug == 1)
printf ("Scale colors\n"):;

for (i = 50; i <= 250; i++)

{
color.pixel= i;
color.blue = color.green = color.red = ((i - 50)*65535)/200;
XStoreColor (display, colormap, &color);

}

if (debug == 1)

printf ("Setcolormap\n"):;
XSetWindowColormap (display, LowResWindow.id, colormap):
XSetWindowColormap (display, HighResWindow.id, colormap):

/K e e e *x/
Cursor CreateCursor ()
{ K e e o o o e i o o e e e e e P T S = > S T T T A 4 i T T . o — */

/* Creates a box cursor to be used at the LowRes window */

K e e e e e e e e o e e e e e e . e 8 o o e e e */

Cursor cursor;

XColor fcolor;

XColor becolor;

Pixmap mask;

Pixmap bitmap;

/* Get background and foreground ceolors */

fcolor.pixel = foreground;
becolor.pixel = background;

XQueryColor (display, colormap, &fcolor);
XQuertlolor (display, colormap, &bcolor);

/* Create pixmap from bitmap data file */

mask = bitmap = XCreateBitmapFromData (display, LowResWindow.id, box _bits
box_width, box_height);

/* Create the cursor with the pixmap */
cursor = XCreatePlxmapCursor (display, bitmap, mask,
s &fcolor, &bcolor, box x,
box_y):
if (cursor != (Cursor) None)

XDefineCursor (display, LowResWindow.id, cursor):
}

return (cursor):

SendRequest (ImageType, x, y, width, height)

ImageType:;

X, ¥;

width, height;

/*__.._____-.__...__._____________-__________-.7. ________________________ *

;* This function handles the requests for images from the server */
___ */

int

ns;

/* Send request for LowRes image */

if (ImageType == 1)
{

}

/* Assign proper values to Request structure */
RequestPacket->ImageType = htonl (ImageType):

RequestPacket->x = 0;

RequestPacket->y = 0;

RequestPacket->height = 0;

RequestPacket->width = 0;

/* Send request structure to the server */

ns = write (TCPSocket, RequestPacket, sizeof (*RequestPacket)):

/* Check for errcrs in sending the request */

if (ns == -1)
perror ("Client: cannot send request!");
exit ();

if (debug ==

printf ("Requested LowRes image...\n");

/* Send request for HighRes image */

else

{

/* Assign proper values to Request structure */

RequestPacket~>ImageType = htonl (ImageType);
RequestPacket->x = ntohs(x);
RequestPacket->y = ntohs(y):
RequestPacket->height = htonl (height);
RequestPacket—->width = htonl (width):

/* Send request structure to the server */ R
if (debug == 1) -

printf ("Before sending messagfe!\n");
ns = write (TCPSocket, RequestPacket, sizeof (*RequestPacket)):
/* Check for errors in sendimy the request */
if (ns == -1)

‘perror ("Client: cannot send request!"™):

exit ()s

}
af (debmg = 1)

printf ("Requested HighRes image...\n");
printf ("RequestPacket->x = %d\n'", x):
printf ("RequestPacket->y = %d\n", y);

}

£ — e e e e e e e i o 2 o e e e e e e e x/
void CreateImageInfo (Picture, type)
unsigned char Picture[512*512];
int type;
{ * ———— - e S —— *

/* Creates the picture in x - to be modified (colormap) *x/

K o e o - - —— - o —— - ————— ¢ —— *
int i;

/* Create image structure *x/

ximage = XCreatelmage (display, visual, 8, ZPixmap, 0, Picture, =xdim,
ydim, 8, 0);

/*___._—-———-——————————__._______.___—_._...'_ ——————————————————————————————————————— */
void HandleHighResEvents ()
{ b TP UPIURRpE U R S U U S —————— RO - —_..*/
/* Handles the graphics events such as draw boxes and XPutImage */
T e o o o ot o e e e e e e e e S > i e . T = S o =] S T — ————— - ————
int i, 3 = 0;
int first = 0;
int width, height;
int index = 1;
int X, ¥
Window root, child;
int root_x, root y;
unsigned int keys buttons?;
XPoint point;
time ¢ . tstart;
XImage *buffer;
int imgx = 258, imgy = 258;
char *mesg[2];
int FrameInterval = 10;
int HighFrames = 0;

/* Initialize default cocordinates */
point.x = point.y = 0; .

/* Start timer for event lodp */ .
tstart = time (NULL);

/* Loop to handle the events for the high-resolution image displays */
while (doneR == 0)

{ 7/*printf (“wait for an event\n");*/

Check number of events in the queue.
then update the HighRes image. If there is an event in the queue
such as select a new area in the LowRes image, then process the

Note that if 15 secs have passed,

event.

If there are no events,

an interrupt will be

caused and the LowRes image will be updated again.

(XEventsQueued (display, QueuedAfterFlush) > 0)

XNextEvent (display, &event high):
if (debug == 1) -

printf ("event-received!\n");
switch (event_high.type)

{

J++;
printf ("loop = %d\n", 3j):;
case Expose:

if (debug == 1)

{

printf ("Expose\n"):
printf ("do-nothing!\n");
}

break;

/* Mouse button is pressed, get coordinates */

case ButtonPress:
if (debug ==
printf ("ButtonPress\n");

point.x = event_high.xbutton.x;
point.y = event_high.xbutton.y;
/* Send request for HighRes image */

if (debug == 1)

printf ("Send HIGHRES requests!\n"):;

start = time (NULL) ;
if (debug ==

printf ("Before send-request!\n"):;
SendRequest (2, point.x, point.y, 64,

if (debug ==

printf ("After send-request!\n");
timediff = time(NULL) - start:;

start = time (NULL);

timediff = time (NULL) - start;

break:;

/* Mouse button is released, display HighRes image */

case ButtonRelease:
if (debug ==
printf ("ButtonRelease!\n")
break:

case MotionNotify:

if (debug.==
printf ("MotionNotify\n");
break:)
/* Receive current HiwhRes image
default:
break;

.
’

from the

64);

server */

if (debug == 1)
printf ("out-of-loop\n"):

/* Loop to handle the events for the high-resolution image displays */

while (done == 0)

XNextEvent (display, &event);
switch (event.type)

/* Display image */

case Expose:

if (debug == 1)

printf ("EXPOSE!ttttittittit\n");
start = time (NULL):;
SendRequest (i, 0, 0, 0, 0);
timediff = time (NULL) - start:
CreateImageInfo (LRImage, 1):;
start = time (NULL):
timediff = time(NULL) -~ start:
if (debug == 1)

printf ("DISPLAYED IMAGE\n");

/* Handle events for the HighRes image */

HandleHighResEvents ():

if (debug ==
printf ("OUT****xx\n");
doneR = 0;
done = 1;
break;
}
}
}
K e e e e e x/
void CreateTCPServerSocket (ServerHost)
char *ServerHost;
{
*
/* ___ */
/* This function creates the TCP socket that is used for the *x/
/* server. : * /
* o s e e e e o e ot i e o o e T 4 S S = T T e 2 e */

struct hostent *hp;
char HostName[64];

/* Clear and set name/address structure */
Jzero ((char *)&TCPSexrverAddr, sizeof (TCPServerAddr)):

J* “Sonvert port mumber tp metwork byte order */

TCPServerAddr.sin port = htons (TCPServerPort);
/* Set family to internet */ ‘
TCPServerAddr.sin_family = AF_INET;

/* Get server address to connect to */

/*sleep (5);*/

if (debug == 1)
printf ("ServerHost = %s\n", ServerHost);

hp = gethostbyname (ServerHost);
if (hp == 0)

printf ("Client Error: could not obtain the address of \n");
exit ():
/* Copy address to socket structure */

bcopy (hp->h_addr 1ist[0], {(caddr_t)&TCPServerAddr.sin_addr,
hp->h__lengTh):;

/* Connect to the server */

sleep (5);

if (connect (TCPSocket, (struct sockaddr *)&TCPServerAddr,
sizeof (TCPServerAddr)) < 0)

{

perror ("Client Error: trying to connect"):;
exit ();

void CreateTCPClientSocket ()

K e e e x/
/* This functian creates the TCP socket that is used for *x/
/* sending the requests to the server. */
/ T o e ot o o o o . . o e G R A o i S e o 8 S D e . e S S S T i 2 > = T T * /

/* Clear and set name/address structure */

bzero ({(char *)&TCPClientAddr, sizeof (TCPClientAddr)):

/* Convert port number to network byte order */
TCPClientAddr.sin_port = htons (TCPClientPort); 3
/* Allow connections fromany server */
TCPClientAddr.siq_addr.s_addi = htonl (INADDR ANY);

/* Set socket family to internet =/

TCPClientAddr.sin family = AF_INET;

/* Create a socket */

%f ({TCPSocket = socket (AF INET, SOCK_STREAM, 0)) < 0)

/*_

perror ("Client: TCP socket failed!");
exit ();
/* Bind socket to local address */

if (bind (TCPSocket, (struct sockaddr *)&TCPClientAddr,
{ sizeof (TCPClientAddr)) < 0)

perror ("Client: bind failed!"):
exit ().,

void
char

ClientSide (ServerHost)
*ServerHost;
K e e e e o o o e i e S A o O e i S S S R A S D it S il Al S Sl . S el W S S U P S S e s ____*/
/* Initializes sockets and handles requests - main routine *;
___ *
int i, ns;
char HostName[64],
if (debug ==

)
printf ("got here!\n");
/* Check if host is proper host */
if (gethostname (HostName, sizeof (HostName)-1) < 0)

perror ("Gethostname problem: check the Host name!\n");
exit ();

}

if (debug == 1)
printf ("\nYour Host is : %s \n", HostName);

/* Create TCP sockets */

if (debug == 1)

printf ("Create sockets!\n");
Createf™CPClientSocket {():
CreateTCPServerSocket (ServerHost):;

/* Open display */

if (debug == 1)
printf ("Before window...\n");

CreateWindow () :

if (debug == 1) ;
printf ("After window...\n"):;

/* Create box cursor for LowRes image */
cursor = CreateCursor ():
/* Allocate memory for the image structure */
if {(debung == 1)
printf ("Allocates memorg...\n");
RequestPacket = (ImageRequest) malloc(sizeof (struct Request));

if (debug == 7])
pointf ("After allacate\n"):

/* Send lowreswindow id */

if (debug ==
printf ("send window id!\n");
start = time (NULL);
ns = write (TCPSocket, LowResWindow.wid, sizeof(LowResWindow.wid)):;
if (debug == .
printf ("write!\n"):;
ns = write (TCPSocket, HighResWindow.wid, sizeof (HighResWindow.wid)):
timediff = time (NULL) - start:;
if (debug == 1)
printf ("Before loop!\n");

/* Loop forever */

1=
for (;:)

/* Send an expose event to event queue */

XSendEvent (display, LowResWindow.id, False, Expose, &event);
if (debug ==
printf ("EVENT SENT\n");

/* Process events - if mouse pressed, request and display HighRes */

HandleEvents ():
done = 0;
RequestTime = 0;
if (debug == 1)
printf ("OUT OF EVENTS LOOP\n");
J++;
i1f (J == 3)
fclose (£d):;
}

/* Closes the socket descriptors */

close (TCPSocket):;

——— —— o ——— —— - T o o St VP Y Ao S e Bt o T S S S o . T — T T — 1 Y i o S o it i T > P o T T o T e T S S

‘ TISL Technical Report 9770-14; “An Over-The-Shoulder Implementation”
Appendix C

—— - -—— ——— o ——— oy n

Over the Shoulder Application

The UniversiTY Of Kansas
Telecommunications and Information
Sciences Lab

/* Module: img server

/* Author: Marcia G. Ramos
/* Date: March 07, 1994
/* Version: 2.0

/* __________________ —_ -——— -

/* C libraries */
$include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>

/* X libraries */

#include <X11/Xlib.h>
#include <X11/Xutil.h>

/* System libraries */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<netdb.h>
<netinet/in.h>
<sys/param.h>
<sys/types.h>
<sys/stat.h>
<sys/wait.h>
<fcntl.h>
<sys/ioctl.h>
<limits.h>
<time.h>

/* Define port numbers for TCP service */

#define TCPServerPort 21000
$#define TCPClientPort 22000

/* Data structures used */
#include "Packets.h”
/* Window structure */ ,
typedef union window_id
Window 1id;

char wid([8]:;
} window_struct;

/* Display devices */
FILE *fp;

Display *CiientDisplay;
Display *AppDisplay;

/* Window information */

GC gcl, gec2;
Visual *visual;

int screen;
unsigned long foreground;
unsigned long background;

/* Window IDs */

Window wid;

window struct Appwindow;
window struct lowreswindow;
window_struct highreswindow;
/* Image structures */

XImage *ximage;
XImage *LowResImage;
XImage *HighResImage:;

/* Size of ‘the TerraVision image */

unsigned int " width;
unsigned int height;

/* Packet with request from client */
ImageRequest RequestPacket;

/* TCP addresses and socket structures */

struct sockaddr in TCPServerAddr;
struct sockaddr in TCPClientAddr;
/* TCP sockets */

int TCPServerSocket:;
int TCPClientSocket;

/* Timing variables for stats */

long start, timediff;
FILE *fd;

[*RERFFH AR F AR FH A H AR FHHE S AP HEFHEHA 4SS EA4H RS EAHHEERE4/
/* MAKE THIS EQUAL TO 1 FOR DEBUG */
J*R R ERAEHAHH R AHHEFHF ISR FHFH 4443 REFFEEHEE4 L R4 R R854/
int sdebug = 0;

/* Sample rate for the LowRes image */

int SampleRate;

/* HighRes frames */

time t HighResFramesTimer;

int T FrameInterval = 10;

int HighResFrames = 0;
float HighResFramesTotal = 0;
int HighResFramesMult = 10;
int HighResFramesCount = 0;
float FrameRate;

char *ServerHost;

char *ClientHost;

char *WindowName;
int LowResSampleRate;
int LowResFrameRate;

/* Get window ID info */

#include "xwininfo.h"

* - ————— e ————————— —— - ——%/
/* This function creates the TCP socket that is used for */
5* receiving the image requests from the client. *;

* -——— - - *
struct sockaddr in TCPServerAddr;
int TCPServerSocket;

/* Clear and set name/address structure */
bzero ((char *)&TCPSe&verAddr, sizeof (TCPServerAddr)):;
/* Convert port number to network byte order */
TCPServerAddr.sin_port = htons (TCPServerPort);
/* Set family to internet */
TCPServerAddr.sin_family = AF_INET;
/* Allow connections from all clients */
TCPServerAddr.sin_addr.s_addr = htonl (INADDR_ANY);
/* Create TCP socket */
if ((TCPServerSocket = socket (AF_INET, SOCK_STREAM, 0}) < 0)
¢ perror ("Server: can’t open TCP socket!");

exit (1) ;
/* Bind socket to port */

if (bind (TCPServerSocket, &TCPServerAddr,
sizeof (TCPServerAddr)) < 0)
{

perror ("Server: can’t bind TCP socket to local address!"):
exit (1), '

/* Listen to the socket for a connection */

if (listen (TCPServerSocket, 1) < 0)

{

perror ("Server: listen failed!");
exit (1);

/* Return socket */

return TCPServerSocket:

.

void

- e e e e e * /

/* ___ */
/* This function creates the image strutures for the LowRes */
/* and HighRes images */
/R e e e e e e e e et e e e e e e e */
unsigned char Image[512%512];

int i

/* Initialize buffer toc 0 */

for (i = 0; i < 512%*512; i++)
Image(i] = 1;

if (sdebug == 1)
printf ("Create imagesi\n");

/* Define and initialize image structures */

LowResImage = XCreatelmage (AppDisplay, visual, 8, 2Pixmap, 0, Image,
512, 512, 8, 0):

HighResImage = XCreateImage (AppDisplay, visual, 8, ZPixmap, 0, Image,
512, 512, 8, 0);

__ */
GetServerImage ()
T i o i o i St et e S e L S ot S S S SR R S S e S S S S Ay S P S e e e R S . o - .t *
;* Gets the whole image from TerraVision *;
T e e e e o s e e o o ot . e e v S S T e . e e o Y e M S T T i S S o o S S b T o i o st *
int i;

/* Grab image from TerraVision */

if (se=bug == 1)
fprintf (fp, "Before getimage!\n");

if ((ximage = XGetImage ({(AppDisplay, Appwindow.id, 0, 0, width, height,
~0, ZPixmap)) == NULL)
?

fprintf (fp, "Error in XGetImage!\n");

if (sdebug == 1)
fprintf (fp, "Image reeeived!\n");

GetHighResImage ()

/K e i e e e e e e e otk e e e e e e o e *x/
/* Gets the HighRes image from TerraVision *x/
-, —— — — ————— o ——————— — " . s S . o . o s o > S R S o O 8 D VR S e o */

int i;

int X, yi

int xcoord, ycoord = O;
int index;
int sizex, sizey;

unsigned long pixelvalue;

sizex = sizey = 512;
/* Get the HighRes image according to the selected area

if ((SampleRate*RequestPacket->x < width/SampleRate) &&
(SampleRate*RequestPacket->y < height/SampleRate))

x = SampleRate*RequestPacket->x;
y = SampleRate*RequestPacket->y;
if (x < (width - 512))

X = SampleRate*RequestPacket->x;
else

X = width - 512;
if (y < (height -~ 512))

y = SampleRate*RequestPacket->y;
else .

y = height - 512;

if ((SampleRate*RequestPacket->x > width/SampleRate) &&
(SampleRate*RequestPacket->y < height/SampleRate}))
{
x width - 512;
y SampleRate*RequestPacket->y;
if (y < (height - 512))
y = SampleRate*RequestPacket->y;

else ‘
y = height - 512;
printf ("x $d\n", x);

printf ("y = %d\n", y):

}
if ((SampleRate*RequestPacket->x > width/SampleRate) &&
(SampleRate*RequestPacket->y > height/SampleRate))

width - 512;
height - 512;

']

X
} Yy
if ((SampleRate*RequestPacket->x < width/SampleRate) &s&
(s=2mpleRate*RequestPacket->y > height/SampleRate))
{
SampleRate*RequestPacket->x;

x_—'-
y = height - 512;
1f (x < (width -~ 512))
X = SampleRate*RequestPacket->x;
else
X = width - 512; o
}

if (sdebug == 1) A
fprintf (fp, "Before géthibhresimage!\n");
fprintf (fp, "x $d\n", x);
fprintf (fp, "y = %d\n", y):

}

/* Grab HighRes image from TerraVision */

(]

if (sdebug == 1)

fprintf (fp, "sizex = %d\n", sizex):;

*/

fprintf (fp, "sizey = %d\n", sizey);

if ((HighResImage = XGetImage (AppDisplgy, Appwindow.id, x, vy,

sizex, sizey,

~0, ZPixmap)) == NULL)

fprintf (fp, "Error in XGetImage!\n");
if (sdebug == 1)

fprintf (fp, "BEFORE PUT HIGH RES!\n");
/* Send HighRes image to client */
start = time (NULL):;

if (sdebug ==
fprintf (fp, "Put High!\n"):

XPutImage (ClientDisplay, highreswindow.id, gc2, HighResImage,

0, 0, 0, 0, sizex, sizey):
if (sdebug == 1)
{

fprintf (fp, "AFTER PUT!\n");
fprintf (fp, "Image. receivedi\n");
fprintf (fp, "size = %d \n'", sizeof(ximage)):;

}
fclose (£fp):

/* image.

unsigned long pixelvalue;

int X, ¥/
int xcoord, ycoord;
int index = 0;

/* Initialize LowRes image coordinates */

xcoord = ycoord = 0;

/* Sample LowRes getting pixel according to the SampleRate selected */

if (sdebug == 1)
{

fprintf (fp, "SampleRate = %d\n", SampleRate);
fprintf (fp, "width = %d\n", width);
fprintf (fp, "height = %d\n", height);

} .

for (y = 0; y < height;'§=y5+ SampleRate)
{

for (x = 0; x < width; x=x + SampleRate)
{

pixelvalue = XGetPixel (ximage, x, y):;

XPutPixel (LowResImage, xcoord, ycoord, pixelvalue);

xcoord++;

xcoord = 0;
ycoord++;
/*printf ("pixel = %1d\n", pixelvalue);*/

e,

}
/* Send sampled image to client display */

if (sdebug ==
fprintf (fp, "BEFORE PUTLow!\n");
XPutImage (ClientDisplay, lowreswindow.id, gcl, LowResImage,
0, 0, 0, 0, width/SampleRate, height/SampleRate):
if (sdebug ==
fprintf (fp, "AFTER PUT!\n");
}

/* o~ e o e 2 2 o 0 7 e e et e et e e e e e e e e e i e e * /

void SendImage @)

/*.. _______ - — e i e e e s 2 2 e e S st e o e e e i oy e oy *

/* This function sends the appropriate image to the client by */
*

5* calling the appropriate functions defined earlier. /
K s e e e e s et o i o S o e - .

/* Get imagé from TerraVision and sample it */

if (ntohl(RequestPackét—>Imaquype) == 1)
{

GetServerImage (),

if (sdebug == 1)
printf ("sampling...\n"):;

if ((width > 512) || (height > 512))
SampleLowResImage ()

if (sdebug == 1)
printf ("sampling done!\n");

else
GetHighResImage ()

if (sdebug == 1)
printf ("gethighres...\n");

}
/* -- *x /

Window byteorder (window)
Window window;

T i s o e S ————— T — _ T —] o o U TP Pl oo D AR S e e SRS D D P S ST A $HAD SR Y D R S S S D D R AL S P S *
/* This function converts the byte order from the Alpha to the */ .
/* onyx. */ ’
K e e i e e o e e o 8 e e e e e x/,

return (({({(window & 0xff00) >> 8) & O0xQ0ff)
| ({window & OxQO0ff) << 8)) << 16)
| ({(window & OxffffOOOO) >> 24);

A

[K e e x/
void ServerSide (argc, argv)
int argc;
char *argv(]:
{
A R ettt ettt L T L P x /
/* This function is the main routine in the server side. It */

/* creates the TCP socket for receiving image requests. The */

socket waits for an image
present at the queue, the

request and if no requests are
server will just send a high
previous coordinates.If requests
the server will process all of

/* resolution image with the

/* are present in the queue, S

;* them in the order they appear in the queue.
T n et e e s S o et e S o e A T

/* Displays names for server and client */

char DisplayName([50];

char TerraDisplay({50};

/* Address size */
int

/* Control variables */

TCPAddrLength;

int Receive;

int First = 1;

int Block = 0;

/* Previous coordinates requested by user */
int prev_x = 0;

int . prev_y = 0;

int i

/* Timer for the LowRes updates */

time t tstart;

/* Get LowRes sample rate from the command line */

SampleRate

if (sdebug == 1)
fprintf (£fp,

%f (sdebug == 1)

("width
("height

printf
printf

%d\n",
$d\n",

LowResSampleRate;

"SampleRate = %d\n", SampleRate);

width) ;
height);

/* Allocate memory for the request structure */

RequestPacket

(ImageRequest) malloc(sizeof(struct Request));

/* Create the TCP socket:ifor receiving requests */

TCPServerSocket
TCPAddrLength

/* Accept client connection */

if (sdebug ==
fprintf (fp,
TCPClientSocket

)
"Before accept

accept (TCPServerSocket,

CreateTCPébcket ()
sizeof (TCPClientAddr);

client!\n"});
&TCPClientAddr,

&TCPAddrLength) ;

if (sdebug == 1)

VN

fprintf (fp, "After accept client!\n");
close (TCPServerSocket);

/* Machine to provide the image */

DisplayName[0] = “\0’;
strcat (DisplayName, ServerHost);
strcat (DisplayName, ":0.0"):
rintf ("DisplayName = %s\n'", DisplayName);
1f (sdebug == 1)
fprintf (fp, "Before open display!\n");
if ((AppDisplay = XOpenDisplay (DisplayName)) == NULL)
{

fprintf (stderr, "server:Could not open display! \n"):
exit (1)

/* Get TerraVision’s window info using the xwininfo function */

if (sdebug == 1)
fprintf (fp, '"Name = %s\n", WindowName):;

if (WindowName == "Qut The Window View")
WindowName = "Out The Window View";

if (WindowName == "Overhead View")
WindowName = "Qverhead View";

xwininfo (argc, argv, WindowName):;

/* Client display */

TerraDisplay([0] = "\0’;

strcat(TerraDlsplay, ClientHost);

strcat (TerraDisplay, ":0.0"):

printf ("TerraDisplay = %s\n", TerraDisplay):

if ((ClientDisplay = XOpenDlsplay (TerraDisplay)) == NULL)

{
fprintf (stderr, "server:Could not get other display! \n"):;
exit (1);

}

if (sdebug == 1)
fprintf (fp, "before GC!\n");

/* Define GC */

screen = DefaultScreen (ClientDisplay):

visual = DefaultVisual (ClientDisplay, screen);
gcl XCreateGC (ClientDisplay, RootWindow(ClientDisplay, screen), 0, NUI-
gc2 XCreateGC (ClientDisplay, RootWindow(ClientDisplay, screen), 0, NUI.

*

n

XSetBackground (ClientDisplay, gcl, background);
XSetForeground (ClientDisplay, g¢l, foreground);
XSetBackground (ClientDisplay, gc2,” background);
XSetForeground (CllentDlsplay, gc2, foreground):
if (sdebug =)

fprintf (fp, "After GC!\n");

~

Appwindow.id = wid;
if (sdebug == 1)

fprintf (fp, "Appwindow.id = %#x\n", Appwindow.id):;
/* Initialize image structures */
CreateImageStructures ();

/* Get LowRes and HighRes window IDs */

if (sdebug == 1) _
fprintf (fp, "Get window.id \n");

Receive = read (TCPClientSocket, lowreswindow.wid, sizeof(lowreswindow.wi
Receive = read (TCPClientSocket, highreswindow.wid, sizeof(highreswindow.
if (sdebug == 1)
{

fprintf (fp, "LowResWindowID = %#x \n", lowreswindow.id):

fprintf (fp, "HighResWindowID = %#x \n", highreswindow.id);
/* Change the byte order if necessary */

lowreswindow.id = byteorder (lowreswindow.id);
highreswindow.id = byteorder (highreswindow.id):;

if (sdebug == 1)

{ fprintf (fp, "LowResWindowID = %#x \n", lowreswindow.id):;
fprintf (fp, "HighResWindowID = %#x\n", highreswindow.id);

/* Set socket to be nbn—blocking x/

fentl (TCPClientSocket, F_SETFL, FNDELAY) ;

/* Initialize timer for LowResFrames */

tstart = time (NULL);

/* Initialize timer for HighResFrames */

HighResFramesTimer = time (NULL) ;

while (1)

{ /* Gets request if there is one */

if (sdebug == 1)
fprintf (fp, "Before read!\n");

Receive = read (TCPClientSocket, RequestPacket,
sizeof (*RequestPacket)):;

/* If there is no request in the queue, send high resolution image */

if (Receive == =1)
/* Checks if accept failed */ ’
if (errno != EWOULDBLOCK)
{ perror ("Server: error in accepting requests!"): :
exit (1) A

/* There are no requests, send image */
else
if (First == 1)
if (sdebug == 1)

printf ("Waiting for first request...\n"):
First = 0;

}

}
if (Block != 0)

if (sdebug == 1)
printf ("SEND_HIGH RES!\n");

/* Get previous coordinates of the HighRes image */
if (Receive == -1)

RequestPacket->ImageType = htonl (2);
RequestPacket->x = prev_x;
RequestPacket->y = prev_y:;

}

/* Send previous coordinates to client */
if (sdebug == 1)
{

printf ("HIGHRES!\n"):;
printf ("LowResFrameRate = %d\n", LowResFrameRate):;

}

if ((time (NULL) - tstart) >= LowResFrameRate)

{
RequestPacket->ImageType = 1;
SendImage ()
tstart = time (NULL):

}

else
SendImage ():

if (sdebug == 1)
printf ("SendImage!\n");

}
}

/* Process requests in the queue */

else

{

Block = 1;
if (sdebug == 1)
{

printf ("RequestIssued!\n");
printf ("TCPSocket = %d\n", TCPClientSocket):

/* Gets data from TCP socket */
if (sdebug == 1) »
{

printf ("Request->ImageType = %d\n", ntohl (RequestPacket- >ImageType
printf ("Request->x = %d\n", htons(RequestPacket >x));
printf ("Request- >y = %$d\n", htons(RequestPacket->y));
printf ("Request->Width = %d\n" ntohl (RequestPacket->width)) ;
printf ("Request-~>height = %d\n", ntohl (RequestPacket->height));

} :

/* Update previous coordinates for HighRes image */
if (ntohl (RequestPacket~>ImageType) == 2)
{

prev_x = htons (RequestPacket->x);

prev_y = htons (RequestPacket->y):
}

/* Sends appropriate image */

SendImage ():

}

K e e e e e e e e e e e e o e e e e e
main (argc, argv)

int argc;

char *argv{];

fp = fopen ("data.dat", "w");

if (sdebug == 1)
fprintf (fp, "Server!\n");

ServerHost = argv(l];

ClientHost = argv[2]:;.

WindowName argvi{3];
LowResSampleRate = atoi (argvi4]):
LowResFrameRate = atoi (argv([5]);

if (sdebug == 1)
{

fprintf (fp, "This is the server!\n");

fprintf (fp, "ServerHost = %s\n", ServerHost):

fprintf (fp, "ClientHost = %s\n", ClientHost):

fprintf (fp, "WindowName = %s\n'", WindowName):;

fprintf (fp, "Sample = %d\n", LowResSampleRate);
}

ServerSide (argc, argv);

4b

BS!

‘ TISL Technical Report 9770-14; “An Over-The-Shoulder Implementation”
: Appendix D

cC
ceC
cc

cC
ccC
cC

-c OTS_client.c
-c OTS.c
-0 OTSv2 OTS_client.o OTS.o =-1Xm -1Xt -1X11 -1PW

dsimple.o -c dsimple.c
OTS_server.o -c OTS_server.cC
OTS_server dsimple.o OTS_server.o -1X11 -1Xt -1Xmu -1Xext

