
Transportation Security SensorNet:
A Service Oriented Architecture

for Cargo Monitoring

Martin Kuehnhausen and Victor S. Frost

ITTC-FY2010-TR-41420-22

April 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures... i
Abstract.. 1
I. Introduction .. 1
II. Problem Area .. 2

A. Proprietary Solutions .. 2
B. Variety of Open Standards.. 2
C. Service Oriented Architecture... 3

III. Related Work ... 4
A. Microsoft - An Introduction to Web Service Architecture ... 4
B. Adobe - Service Oriented Architecture... 4
C. Open Sensor Web Architecture... 5
D. Electronic Freight Management.. 5
E. Globus - Open Grid Services Architecture.. 5
F. Service Architectures for Distributed Geoprocessing ... 5
G. Web Services Orchestration.. 5
H. Summary... 6

IV. Proposed Solution.. 6
A. Overview... 6
B. TSSN Common Namespace.. 10
C. Mobile Rail Network .. 10
D. Virtual Network Operation Center ... 11
E. Trade Data Exchange .. 13
F. Open Geospatial Consortium Specifications... 13

V. Results... 13
VI. Conclusion ... 14
VII. Future Work ... 14
Acknowledgment ... 14
References.. 14

List of Figures

Figure 1: Service message overview... 7
Figure 2: Service cloud ... 7
Figure 3: Service composition. ... 8
Figure 4: Mobile Rail Network message overview .. 11
Figure 5: Mobile Rail Network Sensor Node. .. 10
Figure 6: Mobile Rail Network Alarm Processor ... 10
Figure 7: Virtual Network Operation Center message overview.. 12
Figure 8: Virtual Network Operation Center Sensor Management .. 11
Figure 9: Virtual Network Operation Center Alarm Processor .. 11
Figure 10: Virtual Network Operation Center Alarm Reporting ... 12
Figure 11: Trade Data Exchange message overview .. 13
Figure 12: Trade Data Exchange Service ... 13

1

Transportation Security SensorNet:
A Service Oriented Architecture

for Cargo Monitoring
Martin Kuehnhausen, Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

Abstract—This paper describes a system architecture for a
Transportation Security SensorNet (TSSN) that can be used to
perform extensive cargo monitoring. It is built as a Service
Oriented Architecture (SOA) using open web service specifications
and Open Geospatial Consortium (OGC) standards. This allows
for compatibility, interoperability and integration with other web
services and Geographical Information Systems (GIS).

The two main capabilities that the TSSN provides are remote
sensor management and alarm notification. The architecture and
the design of its components are described throughout this paper.
Furthermore, the specifications used and the fundamental ideas
behind a SOA are explained in detail.

The system was evaluated in real world scenarios during
field trials and performed as specified. The alarm notification
performance throughout the system, from the initial detection
at the Sensor Node service to the Alarm Reporting service, is
on average 2.1 seconds. Location inquiries took 4.4 seconds on
average. Note that the majority of the time, around 85% for most
of the messages sent, is spent on the transmission of the message
while the rest is used on processing inside the web services.

Finally the lessons learned are discussed as well as directions
for future enhancements to the TSSN, in particular to security,
complex management and asynchronous communication.

Index Terms—Telemetry, Transport protocols, Intermittently
connected wireless networks, Communication system software,
Data communication, Software engineering

I. INTRODUCTION

THE theft and tampering of cargo are common problems
in the transportation industry. According to Wolfe [1] the

“FBI estimates cargo theft in the U.S. to be $18 billion” and
the Department of Transportation “estimated that the annual
cargo loss in the U.S. might be $20 billion to $60 billion”.
Wolfe [1] also gives good reason to believe that the actual
number may be even higher than $100 billion because of two
reasons. First it is assumed that about 60 percent of all thefts
go unreported and second the indirect costs associated with a
loss are said to be three to five times the direct costs.

With the advances in technology, this problem has evolved
into a cat-and-mouse game where thieves constantly try to
outsmart the newest cutting edge security systems.

In terms of securing cargo, there are usually two aspects:
first ensuring the physical safety of the cargo and second

M. Kuehnhausen and V. S. Frost are with the Information and Telecommu-
nication Technology Center, The University of Kansas, Lawrence, KS, 66045,
USA; Corresponding author: mkuehnha@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially based
upon work supported while V. S. Frost was serving at the National Science
Foundation.

monitoring and tracking it. The latter especially has become of
more interest as of late because many shipments cross national
borders and cargo may be handled by a multitude of carriers.
All of this leads to a huge demand for tracking and monitoring
systems by the cargo owners, carriers, insurance companies,
customs and many others.

This paper is part of a series that describe the design,
various components and conducted experiments of the TSSN.
In particular we focus on the software architecture here and
refer to papers that deal with the other parts of the TSSN in the
following. [2] gives an overview of the hardware utilized and
describes in detail truck trials and a short haul train trial. [3]
presents a new and flexible approach to deal with challenges
such as intermittent and low-bandwidth communication in
mobile monitoring environments and a long haul train trial in
Mexico. Furthermore [4] discusses a framework for analyzing
and visualizing SOAP messages to overcome the challenges
of complexity and disparity that web service monitoring and
management approaches face. Security associated with the
TSSN and specifically issues that arose when integrating
elements from the Web Services Architecture (WSA) led
by the World Wide Web Consortium (W3C), specifically
publish/subscribe communication and service security are de-
scribed in [5].

Here, a framework is introduced which builds on open
standards and software components to allow “monitoring cargo
in motion along trusted corridors”. The focus lies on the
use of a Service Oriented Architecture and Geographical
Information System specifications in order to allow an industry
wide adoption of this open framework.

In the following we discuss the problems of proprietary
systems, the advantages of open standards and the approach
of using a Service Oriented Architecture in the transportation
industry. We introduce the design and architecture of the
framework and explain the individual components as well
as the software parts and specifications that are used in the
implementation.

The discussion of proprietary systems in contrast to open
standards in the following section provides an overview of the
challenges that trade and shipping partners face. It explains
why it is important to design an open system that is based on
standards. Some of the main advantages are a decrease in cost,
more efficient shipment management, and enhanced visibility
and tracking capabilities. This paper presents the architecture
of the TSSN that was implemented to show that such an open
system can be built and deployed successfully.

2

II. PROBLEM AREA

In order to address the problem of cargo security, the
Transportation Security SensorNet project has been created. Its
goal is to promote the use of open standards and specifications
in combination with web services to provide cargo monitoring
capabilities. The main question is the following:

“How can a Service Oriented Architecture, open
standards and specifications be used to overcome the
problems of proprietary systems that are currently
in place and provide a reusable framework that
can be implemented across the entire transportation
industry?”

The three main aspects of this question are discussed next.

A. Proprietary Solutions

Current commercial systems in the transportation industry
are often proprietary. This is because a lot of effort is spent on
research and development in order to create intellectual prop-
erty. The assumption is then that as long as the competitors
do not have access to the system and its protocols that intel-
lectual property is safe and provides a competitive advantage.
Another common “benefit” of keeping the systems closed is
the perceived additional security since in order to successfully
attack the system its implementation and protocols have to be
reverse engineered.

The problem with this is that these advantages are often
one-sided and lead to stove pipe systems provided by a single
vendor. Once a proprietary system has been implemented it
has to be maintained. What happens if a customer that uses
the system invested a lot of money into a its infrastructure and
the training of its employees and the company that provides
the system releases a new version of it which of course costs
money again. The customer has several choices:

1) Upgrade: Throughout the literature this is often consid-
ered the most expensive option because of the cost for the
upgrade to the new version and the additional training to the
employees that has to be provided. The benefits of upgrading
are the use of new technology, potential gains in efficiency
through new features and the latest bug fixes.

2) Do Not Upgrade: By many regarded as the most cost
efficient solution, choosing not to upgrade compromises new
features and updates for the ability to save costs. An ap-
proach that is taken by some companies is the skip a version
technique. This allows companies to plan better as internal
processes and systems often have to interoperate and need to
remain compatible to each other.

3) Change Vendor: In this situation, the new version of the
system that is provided by company A does not provide the
necessary features or is simply too expensive. Furthermore,
a different company B offers a similar product with more
features or for less money. The move to the new system
is now dependent on the following things: How big are the
estimated savings and what are the direct and indirect costs of
the transition? It often happens that after careful consideration
the costs outweigh the estimated gains and the customer goes
back to considering whether or not to simply upgrade. If a

transition is made, the process could be time consuming and
turn out to be more complicated than expected.

Picture this extreme case as well. What happens if the
vendor goes out of business? All of the sudden, the short-
term goal is to maintain support for the system and to keep
it running while in the long-term to look for a suitable
replacement and be forced to transition. Even if this case does
not happen the dependency on the vendor can be crucial. If the
system has errors or a particular enhancement is desperately
needed, the vendor decides what to do about it. For big
companies that are major customers this may not be such a
big problem because they often get preferential treatment. But
for small and medium businesses the wait might be too long
and lose them customers and revenue.

The main point here is that many customers are locked
into proprietary solutions that are incompatible with similar
solutions offered by competitors. In a 2003 survey by the
Delphi Group [6] it was found that 52% of developers and 42%
of consumers see standards enabling the “approval of projects
otherwise threatened by concerns over proprietary system
lock-in”. Furthermore, an overwhelming 71% of developers
and 65% of consumers feel that the use of open standards
“increases the value of existing and future investments in
information systems”.

The problem of non-interoperability with regard to geospa-
tial processing is the topic of a paper by Reichard [7]. Because
Geographical Information Systems are often immensely com-
plex, companies that invest heavily into this area often only
support their product. As described in the sample scenario, this
leads to a lack of coordination among entities such as the Fed-
eral Emergency Management Agency (FEMA), the National
Transportation Safety Board (NTSB) and the Environmental
Protection Agency (EPA) because of the inability to share vital
information which is the key to fast decision making and data
analysis

B. Variety of Open Standards

1) Standards principles: The idea of open standards and
specifications is to define interfaces and protocols that can be
used as references for the implementation of a system. There
are many standards committees and industry groups that aim
to define them, most often focused on a particular area. Some
of the most well-known ones include the World Wide Web
consortium (W3C), the Organization for the Advancement of
Structured Information Standards (OASIS), the International
Telecommunication Union (ITU) and the International Orga-
nization for Standardization (ISO).

The main principles that govern the development of stan-
dards are usually the same across all organizations. The
following is an overview according to ISO:

a) Consensus: All parties that are affected by the pro-
posed standard get the chance to voice their opinions. This
includes initial ideas and continues with feedback and com-
ments during the standardization process.

b) Industrywide: The idea is to develop global standards
that can be used worldwide by entire industries.

3

c) Voluntary: The standardization process is driven by
the people that are interested in it and that see its future
benefits across a particular industry. It is often based on best
practices that are already commonly in use.

2) Aspects of Open Standards: The importance of open
standards is emphasized in a paper by McKee [8]. It provides
the evolution and success of the Internet as the “perfect
example” for the use of open standards. In particular it explains
that since the Internet is based upon communication and
communication means “transmitting or exchanging through a
common system of symbols, signs or behavior”, the process of
standardization can basically be seen as “agreeing on a com-
mon system”. The other parts of the paper are focused on how
openness can help Geographical Information Systems (GIS)
but many of the points mentioned apply to open standards in
general.

In particular the following aspects are associated with open
standards:

a) Compatibility: This includes the ability to share data
across vendors and systems in a uniform and non-proprietary
form. It allows processes to use essentially the same data in
order to perform their specific task without the need of costly
conversions or interpretation errors. Most common formats
are also backward compatible which means that no particular
version of the system is needed to interpret the data. Only a
certain subset of functionality might be provided when using
in older versions though. Another advantage of open formats
is the fact that even if a particular version of a format is
completely outdated and only used in legacy systems, its
specification is still accessible to everyone. Hence systems can
still be designed to use the format.

b) Freedom of Choice: A major problem of proprietary
solutions that was described earlier was the vendor lock. Once
a customer implements a proprietary system and builds its
infrastructure around it, choices in the future are limited. Open
standards by definition are vendor independent. Furthermore
many of them support a broad variety of implementation
scenarios. These implementations often are not even limited
to a particular platform, operation system or programming
language. This is especially true for most of the web standards.

c) Interoperability: Through the use of clearly defined
interfaces, standards dramatically enhance interoperability.
The standards that define interface specifications do not pro-
vide a specific implementation but provide references to best
practices and implementation patterns instead. Companies
choose what kind of system implementation they prefer. This
allows them to make use of existing infrastructure and capa-
bilities that might otherwise have to be changed when using
a proprietary system. The uniform access to functionality and
data enables companies to connect a multitude of systems and
make more use of them. Also, in case one part of the system
has to be replaced, another one that simply provides the same
interface can take its place. This allows great flexibility in
terms of the overall system design.

d) Leverage: For companies the standardization of con-
cepts, frameworks and common approaches provides a number
of benefits. Since research and development can be extremely
cost intensive, companies want to make sure there is a guar-

anteed return on investment for them. Open standards do not
necessarily lead to increased revenue but they do provide
insurance to the companies that they are on the “right” track
and what they implement is actually used industrywide. This
is very important because customers are aware that when they
purchase a system from company A that uses a proprietary
or non-standard implementation they might become a victim
of vendor lock. Acquiring a system that is build on open
standards allows them to choose the best and most cost effec-
tive solution from a variety of independent implementations.
Another advantage is that once different implementations by
the main vendors have been established, there is room for
custom solutions by smaller vendors, often in the form of
extensions or plugins.

e) Open Source: The biggest benefit of using open
standards is that fact it leads to innovation. This is because
everybody can contribute, suggest enhancements, outline best
practices and address mistakes. In terms of software this
approach is often referred to as open source.

However, there are several problems that can be associ-
ated with non-proprietary systems. Implementations are based
upon the interpretation of the standards which may differ
significantly. Furthermore, some implementations only support
a subset of the original specification, are slower than the
reference implementation or use incompatible sub systems.

C. Service Oriented Architecture

The concept of information processing and sharing across
various applications using web services is the main focus of
this paper. The basic idea is to define components of a system
as services and users as clients that can retrieve data from
them. Note that interaction between services is done using
embedded clients. The services take care of things such as
information processing, data analysis and storage. With all
business logic embedded into services and interaction between
them clearly defined using open standards an infrastructure is
built that is called the Service Oriented Architecture (SOA).

The Internet allows the following two things that are rel-
evant to information processing: a common means of com-
munication and the ability for efficient information sharing.
There exist many standards on how to transmit, receive, encode
and decode data. SOA builds on top of them to provide
new specifications that enable the design, implementation and
use of web services. Through these web services companies,
government agencies and others have the ability to share and
process information in a uniform manner which cuts costs,
time and resources and improves efficiency.

Now why is SOA such an “enabler”? What is possible
now that was not possible before? According to Irmen [9]
automation and efficient communication with partners are the
two most important things in supply chain management which
represents the core of the transportation industry. Let us take a
look at how the Service Oriented Architecture addresses both
of them in regard to the individual topics outlined in [9].

1) Automation: A vital part in transportation is the screen-
ing process. Companies that transport goods must ensure
safety and therefore check all parties involved in the trade.

4

An important aspect of this is the use of a denied trade
list which lists items and companies that are not allowed to
import or export into specific countries. With the reduction in
manual labor and transition to a web services based system
that automatically performs these checks, efficiency could be
greatly increased.

A closely related topic is accountability. Who is responsible
if something goes wrong during the trade process? Since goods
are often handled by many different parties, it must be possible
to monitor the location of cargo and handovers tightly. This
is especially important in cases of tampering or even theft of
the cargo.

Furthermore, agencies and customs more and more require
electronic trade information instead of paper documents in
order to track trade. Because of different formats and legacy
applications that are often unable to provide this information
in its entirety, additional resources have to be allocated in
order to remain compliant with current practices. Web services
and open standards can overcome this problem with uniform
interfaces and common data formats.

Having the ability to monitor the location not just for
perishable goods but also for high value goods is of great
importance in the transport chain. Current processes should
be able to automatically route cargo based on its needs and
cost effectiveness.

Irmen [9] also points out that “the lack of integration
between products causes users to deal with multiple systems
having disparate data and non-uniform input and output” and
calls for the use of a single platform. Using the Service Ori-
ented Architecture this “call” becomes less necessary because
it is platform independent and at the same time able to provide
integration of multiple systems and standardized data formats.

2) Efficient Communication: Building a virtual network
among the parties involved in the trade process establishes
efficient means of communication. It allows the coordination
between otherwise disparate entities that is essential to provide
cost effective and reliable shipping of cargo. The Internet
provides the communication layer but it is the standards of
web services that enable the integration of different systems.

Irmen [9] mentions the Software-as-a-Service (SaaS) ap-
proach which allows software to run on a per-use basis without
the costs of complex hardware infrastructure. This works very
well with SOA as the interfaces defined by those services are
often web services interfaces that are essentially part of SOA.

Security within the transportation industry plays a big
role because trade data is to be kept confidential and only
distributed on a need-to-known basis. This puts an additional
burden on the parties that are involved, as the parties must
exchange data confidentially at each point of interaction. If
open standards are used for this, security is implemented based
on interfaces and policies that are easy to manage.

In order to manage the transportation chain in its entirety,
a global view is often needed. This is problematic since indi-
vidual parties often only deal with their respective neighbors.
Using open standards and the Service Oriented Architecture
approach each party could provide an uniform information
interface that is accessible to other parties in the chain. This
allows consistent reporting, monitoring and analysis at each

step during the shipping process.
The reporting part especially has gained more attention over

the past years as the focus has shifted towards more ethical
and socially responsible business practices. Accountability
coincides with this social visibility and therefore improvements
in monitoring cargo not only lead to increased revenue on the
business side but better public relations as well.

Overall the paper by Irmen [9] gives excellent reasons
for open systems in terms of accountability, coordination,
scalability and cost, these important aspects that need to be
taken into consideration when designing an architecture such
as the Transportation Security SensorNet.

III. RELATED WORK

In the following sections related work that is relevant to
various aspects of the Transportation Security SensorNet such
as Service Oriented Architecture, web services, communica-
tion models, the Open Geospatial Consortium specifications
and sensor networks is analyzed.

A. Microsoft - An Introduction to Web Service Architecture

Cabrera et al. [10] outline concepts that led to the imple-
mentation of Service Oriented Architectures and development
of the web services specifications that surround them and are
used by the TSSN. A lot of the main approaches have been
standardized in various committees and organizations by now
but were only in the early stages when Cabrera et al. first
discussed them.

B. Adobe - Service Oriented Architecture

An Adobe technical paper by Nickul et al. [11] outlines gen-
eral architecture approaches that can be taken when transition-
ing business processes to the Service Oriented Architecture.
It mentions a widely used technology called the Enterprise
Service Bus (ESB) that provides a standardized means of
communication for all services that connect to it. For the
TSSN this is of importance when it comes to asynchronous
communication as the Java Message Service (JMS) uses
queues that are on the ESB for message exchanges (see [3]
reference, IV-A6).

In addition to the basic Request-Response, several other
message exchange patterns that go beyond the standardized
ones are described. A registry keeps track of service metadata.
The service provider is responsible for updating it whenever
a change occurs and the service consumer subscribes to the
registry for any of these changes. The metadata that is provided
is then used to configure a service client. Hence, the client can
issue requests and receive responses.

The TSSN essentially uses a very similar approach with the
UDDI. Web services automatically register with the UDDI
when they are started and clients are able to use specific
services by looking them up in the UDDI.

5

C. Open Sensor Web Architecture

An approach to implement the proposed standards of the
Sensor Web Enablement (SWE) that are described in [12]
is outlined by Chu et al. [13]. A more detailed definition
of the system and its core services is provided in the thesis
by Chu [14]. The system is called NICTA Open Sensor Web
Architecture (NOSA) and is focusing on the combination of
sensor networks and distributed computing technologies.

The TSSN uses a similar approach but has some significant
differences. The goal of both implementations is to integrate
a sensor network into a web services architecture using open
standards. NOSA uses a sensor application that is tightly
integrated into the Sensor Operating System and then provides
sensor data and control to web services in a non-standard for-
mat. TSSN on the other hand implements sensor management
and monitoring functionality inside a single service, the Sensor
Node (see IV-C1) and allows different sensors to be “plugged
in”. This allows other services to use standard web service
interfaces and SOAP messages in order to access sensors.

Furthermore, the web services used by NOSA are imple-
mented manually according to the OGC specifications which
causes them to be limited as not everything that is specified is
also implemented. In contrast, the TSSN uses automatic code
generation (see IV-A1d) that enables it to use all OGC specifi-
cations. Since their elements and interfaces are generated the
only thing that has to be implemented is functionality. This
approach significantly reduces development efforts.

D. Electronic Freight Management

The Electronic Freight Management (EFM) initiative [15] is
a project that focuses on the improvement of communication
between supply chain partners using web technologies. One of
the main goals is to provide a common and open technology
platform for sharing cargo information among smaller and
medium size trade partners. The idea is that the information
is only entered once and then shared among members of the
supply chain.

EFM because of its SOA approach provides a common elec-
tronic communication platform that maintains cargo related
information on a web service basis. This information is then
shared with authorized users while digital certificates and web
service security ensure data integrity and confidentiality. The
key benefit here is the improved visibility of shipment informa-
tion which enables all supply chain members to perform their
processes more efficiently and plan ahead better [16]. The data
exchange is standardized and based on the Universal Business
Language (UBL). Furthermore each individual transaction is
uniquely identifiable by a Unique Consignment Reference
(UCR).

The TSSN approach is similar but deals in particular with
cargo monitoring in mobile environments. The Trade Data
Exchange (TDE) as described later is responsible for managing
and sharing shipment information.

E. Globus - Open Grid Services Architecture

Globus is an architecture that is based on grid computing.
It focuses on providing capabilities as services in a grid

environment using standard interfaces and protocols. An initial
paper by Foster et al. [17] gives an overview of the architecture
and design decisions. In particular, Globus supports “local
and remote transparency with respect to service location and
invocation” and “protocol negotiation for network flows across
organizational boundaries”. Its service approach is similar to
the Service Oriented Architecture that is used by the Trans-
portation Security SensorNet. Additionally, security concepts
that work inside a grid are applicable to SOA and vice versa.

The current architecture of Globus is still based on the
same principles that were initially described by Foster et
al. [17]. The combination of custom components and web
services components provides an architecture for security, data
management, execution management, information services and
a common runtime in a grid environment.

In contrast to the TSSN, Globus makes use of web service
specifications in some of its components but also provides
custom implementations and interfaces as for service discovery
and notifications. The TSSN uses web services specifications
and OGC standards almost exclusively which ensures stan-
dards compliance and compatibility. For service discovery the
UDDI [18], [19] is used and for notifications WS-Eventing
[20].

F. Service Architectures for Distributed Geoprocessing

A research article by Friis-Christensen et al. [21] outlines
the implementation of an application that analyzes the impact
of forest fires using web services. The main focus is the
transition from a client application to a flexible web services
architecture using Open Geospatial Consortium specifications.
The components include multiple data sources that are made
available through data access services like the Web Map
Service and the Web Feature Service. A geoprocessing service
performs the analysis of the data and provides it to a client.
Furthermore a discovery service serves as the registry for all
services and their metadata.

The prototype implemented uses synchronous communica-
tion in between services. The problem in this case is that the
actual processing can take quite a long time. In the future the
authors want to transition to an asynchronous communication
model that is similar to the OGC Web Notification Service.

In addition, it is pointed out that even though standardized
interfaces allow for a combination of services which provides
flexibility, the transport of high volumes of data is often not
feasible in geoprocessing scenarios which can lead to highly
specialized but not very reusable services.

The implementation is interesting in the sense that it exclu-
sively uses OGC specifications which makes it compatible to
other Geographical Information Systems. The TSSN aims to
be OGC compliant as well but includes specifications that deal
with sensor networks such as the Sensor Observation Service
and the Sensor Alert Service, something that Friis-Christensen
et al. [21] does not address.

G. Web Services Orchestration

The problem of reusability of services and “next generation
challenges” was addressed by Kiehle et al. [22]. The idea

6

here is to increase transparency and reusability by splitting
processes into smaller more reusable processes and utilizing
a work flow management system called Web Services Orches-
tration. This is especially important for the integration of the
Transportation Security SensorNet into systems used in the
transportation industry. Its modular design and architecture
allow single components to be reused and and information
flows to be created.

The Web Processing Service specification describes how
services can be arranged and combined into service chains that
form a process. Two alternatives are commonly used in order
to achieve this. A Web Processing Service can be set up to
combine and “encapsulate” other individual web services and
therefore provide the desired abstraction. However, the best
way to define work flows is using the Business Process Execu-
tion Language (BPEL). BPEL enables complex service chains
to be defined without the need for custom and potentially
not reusable Web Processing Services that just “encapsulate”
services.

H. Summary
The related work addresses the following key technologies

that play an important part in the Transportation Security
SensorNet:

1) Service Oriented Architecture: The development of SOA
and its web services specifications has come a long way
but is still far from over. Even though specifications exist,
organizations and businesses often implement components
that are similar to the specification but not compliant. As
discussed before, this is the case for service discovery and
notifications in Globus. Two common reasons behind this are
the following. First, the specification may be available but
there are hardly any reference implementations that can be
used. Second, extensions to the specification that are necessary
for a particular implementation or in a specific environment
such as the grid are not covered by the standard.

2) Open Geospatial Consortium: The OGC specifications
are often complex and there is significant development effort
necessary to implement the elements, interfaces and func-
tionality they define. Automatic code generation as described
IV-A1d and used by the TSSN can facilitate their implemen-
tations but is not used very often.

3) Sensor Networks: The implications on communication
models that sensor networks have, in particular asynchronous
message exchanges, are often ignored in web service architec-
tures. As seen in NOSA, the focus is on the implementation of
a subset of OGC standards for a particular sensor network, but
the link to an overall SOA seems to be missing. It is evident
that current systems seem to lack the combination of SOA,
OGC specifications and sensor networks. The TSSN combines
all these technologies and bridges the gap between implemen-
tations that just deal with SOA and OGC specifications and
systems that use OGC standards in sensor networks.

IV. PROPOSED SOLUTION

A. Overview
This section describes the architecture of the Transportation

Security SensorNet (TSSN). It provides an in-depth discussion

of design aspects and the implementation.
1) Service Oriented Architecture:

“Service Oriented Architecture (SOA) is a paradigm
for organizing and utilizing distributed capabilities
that may be under the control of different ownership
domains.” [23]

Building a “Service Oriented Architecture for Monitoring
Cargo in Motion Along Trusted Corridors” makes sense.
According to a study by the Delphi Group [6], companies
that collaborate usually request compliance for the following
standards: XML 74%, J2EE (Java) 44% and SOAP 35%. The
architecture used for the implementation of the TSSN utilizes
all three technologies by separating functionality into web
services. This allows for high flexibility and is cost effective.

Haas et al. [24] early on proposed various models for web
service architectures. The Message Oriented Model focuses
on message relations and how they are processed. An ap-
proach that centers around resources and ownership is the
Resource Oriented Model. The Policy Oriented Model defines
constraints and focuses on security and quality of service.
Ideas from all these models have been combined with the
Service Oriented Model into what has become SOA. Of the
proposed models it has been the most widely implemented.

A book that provides an excellent overview of Java and
web services is written by Kalin [25]. Note that SOA by
definition is programming language and platform independent.
It is built on the basis of requests and responses and the
independence of web services. The choice to use Java for the
implementation was made because the TSSN is built on top
of previous research on the Ambient Computing Environment
for SOA by Searl [26] which is written in Java.

The main components of the TSSN are sensor management
and alarm notifications. An overview of the services and
relevant message exchanges is shown in Figure 1.

The Trade Data Exchange (TDE) (see IV-E) provides
shipment, route, logistics and relevant cargo information. It
is managed externally and used by the system only through
its specified interface. The Virtual Network Operation Center
(VNOC) (see IV-D) is responsible for the processing of sensor
data and alarms. One of the major capabilities that it provides
is alarm notification. The Mobile Rail Network (MRN) (see
IV-C) deals with the actual management of sensors on a
mobile platform, e.g. a train. Web services at the Mobile Rail
Network capture sensor data from the sensors and “preprocess”
that data. A detailed description of each individual service is
provided later in this section.

The architecture consists of web services that are separated
into service clouds. These service clouds represent the differ-
ent geographically distributed locations (e.g. Overland Park,
KS for the TDE; Lawrence, KS for the VNOC and on a
moving train for the MRN) where services are deployed and
are shown in Figure 2.

The web services are developed according to the web service
specifications and the standards provided by the OGC. This
means that they aim to be standards compliant. Since the
OGC specifications are at times very complex, the Geography
Markup Language (GML) for example defines over 1000
elements, the basis for the framework was implemented using

7

TDE
MRN

TradeDataExchange

SensorNodeAlarmProcessor

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Subscription

Fig. 1. Service message overview

VNOC

AlarmReporting

AlarmProcessor

SensorManagement

TDE

TradeDataExchange

MRN

AlarmProcessor

SensorNode

Fig. 2. Service cloud

custom interface definitions first and adding the OGC ones
later. This enabled fast prototyping and testing of the system.

The following sections explain in-depth the approaches and
technologies used in the architectural prototype and implemen-
tation of the TSSN.

a) Ambient Computing Environment for SOA: The in-
frastructure described by Searl [26] called Ambient Computing
Environment for SOA (ACE SOA) forms the basis of the im-
plementation of the TSSN. It provides a complete SOAP stack
using Apache Axis2 and a variety of other useful programs
that assist in the development of a SOA. ACE SOA deals with
multiple ownerships and federations that provide web services.
In particular it covers the following aspects:

• Service Discovery across different federations
• Authentication of clients and services
• Authorization of clients and services
• Subscriptions

The implementation of the capabilities provided is based on
Apache Axis2 and web service specifications. It is explained
in detail in the following sections.

b) Apache Axis2: Apache Axis2 is a software stack that
allows the development and running of web services and
clients. Its architecture as described by Chinthaka [27] consists
of the following main components:

AXIs Object Model (AXIOM): AXIOM is an XML object
model that aims for high performance while requiring low
amounts of memory. The idea behind it is the application of
a pull parser. This allows objects to be built from XML only
up to the information that is needed by the user while the rest
of it is deferred. The advantage of this is that the memory that
an object requires is significantly reduced. Furthermore, this
approach also increases performance since the entire object
model does not have to be constructed before information can
be retrieved, which is the case in the Document Object Model
(DOM) parser.

Extensible Messaging Engine: Axis2 provides a very
modular architecture that allows for a variety of different
implementations of web services as long as they adhere to
certain specifications. A variety of transports such as HTTP,
SMTP, JMS and TCP can be used for message exchanges.
Inside the engine each message goes through phases that are
part of the piping model which is used to implement Message
Exchange Patterns (MEP). Inside these phases messages can
be modified, filtered or processed. The advantage of doing

8

this inside a phase is that it applies to all messages. This
allows for service independent processing implementations.
The message receiver will then be responsible for handing over
the actual message to the service implementation accordingly.
They also take care of synchronous and asynchronous message
communication.

Context Model: Axis2 provides a hierarchical context
model that distinguishes between the following levels:

• Configuration of Axis2
• Service Group which is a collection of services
• Service which contains several operations
• Operation that consists of messages
• Message that is sent or received
These contexts are important in the implementation of web

service specifications such as WS-Security and WS-Policy. It
means that these specifications can be applied on a level basis
which provides great flexibility.

Pluggable Modules: In order to provide even more flex-
ibility and to make the implementation of web service speci-
fications easier to use, Axis2 provides modules. These allow
an implementation of message processing that is common and
useful for many web services to be shared. Modules can also
be engaged or disengaged on the following levels:

• System which means that every service makes use of the
module such as WS-Addressing

• Service which useful for WS-Eventing
• Operation that for example allows fine grained security

using WS-Security
More information about the modules that are used in the

TSSN see IV-A4.
Data Binding: Since a majority of data processing,

element definitions and interface specifications are in XML,
Axis2 provides a variety of data binding frameworks such as
XMLBeans [28], Java Architecture for XML Binding (JAXB)
[29] and JiBX [30]. In addition, the Axis2 Data Binding (ADB)
can be used, which due to its tight integration with Axis2
is highly performant. For instance, every object contains a
factory that is able to transform XML into the specific object
and vice versa.

Further development was done by the author on this data
binding to support a full range of OGC specifications such
as the Sensor Observation Service, Sensor Alert Service and
most notably the Geography Markup Language.

As part of this work several changes to the initial version of
Axis2 were made in order to either fix bugs or support more
functionality. In particular the build structure was adapted to
work better with the TSSN development. It makes extensive
use of Apache Ant for the automatic generation of elements
from their respective XML schema definitions, the compilation
of Java classes and the deployment of web services and clients.

c) SOAP: Service Oriented Architectures make use of
SOAP [31] as a flexible message format. The TSSN does the
same since web service specifications can easily be integrated
and applied to SOAP messages.

d) WSDL: All services in the Transportation Security
SensorNet are defined using the Web Services Description
Language (WSDL) version 2.0. An in-depth introduction is

Service Java Classes

WSDL

Service
Skeleton

External Service
Stub B

WSDL2Java

External Service
Stub A

Schema
Elements

Service
XML Schema

External
XML Schemas

External library A

External library B

Data A

Data B

Service

Service Implementation

Fig. 3. Service composition

provided in [32]. This section explains how the combination
of WSDL files and XML schemas make up the foundation of
a web service.

Utilizing the automatic code generator of Axis2 called
WSDL2Java, all elements defined in the XML schemas are
available as Java classes. Furthermore a skeleton is created
that contains the operations of the web service as methods. In-
teraction with other services is achieved using their respective
stubs which provide methods for each of its defined operations.
They allow clients to perform requests directly using Java.
This is because Axis2 provides the entire SOAP stack from
the message format to the parsing into elements all the way
up to the invocation of a method that represents a service
operation. The composition of the generated parts, data and
external libraries then forms the actual service implementation
(see Figure 3).

2) Services: The services that are implemented in the
TSSN make use of a variety of components. For long term
information storage, a MySQL database is used. A object-
relational mapping tool called Hibernate [33] enables objects
to be stored and retrieved transparently without the need
of complicated database interactions. Esper [34] provides
complex event and alarm processing and is used at the VNOC.
The Alarm Processor at the MRN currently uses a less
complex approach. The Sensor Node is responsible for the
actual communication with the sensors. It must use a device
specific protocol [35] and a serial connection library for Java
called RXTX.

Each component and its particular use is explained in the
later sections when each individual service is described. At
a high level, one of the main aspects when dealing with
web services is the definition of whether they are stateless
or stateful:

a) Stateless: By default web services are meant to be
stateless. This is because most message exchanges are com-
pletely independent of each other. Web services usually offer
calculations, information or capabilities that only require the
service to perform a specific action and give a response. This
is part of the autonomy approach of web services.

Even in the case where a web services provides data, the
service is still considered stateless since the retrieval of the
data at any given time is not dependent on the internal state

9

of the service but only on the underlying data. If the data
changes there is no state change in the web service and it still
provides the same functionality.

b) Stateful: The need for stateful web services has been
identified for the TSSN because there are certain limitations in
just using stateless web services. Given a online data processor
that analyzes sensor data; using a stateless web service, it is
impossible to react to trends and complex events because the
service is limited to single data objects that it receives.

Let us say that a web service is monitoring whether seals
that lock cargo containers are broken and is supposed send out
warning messages whenever they are. The service has limited
capacity in terms of storing historic data but should still be
able to intelligently determine if a sensor reading that shows
that a seal is broken is just a misreading or a real threat. This
is only possible if the service keeps track of previous states.
In contrast, a stateless service would only be able to react
to the current reading and is forced to make decisions based
on this single piece of data. Another example is the Alarm
Processor service (see IV-C2) at the MRN that is used in the
TSSN implementation. It classifies sensor data from containers
either as information or security depending on whether one is
currently allowed to open the container or not.

3) Clients: Clients are able to make use of the operations
provided by the web services. They usually utilize the same
modules as the service. This means that in theory all web
services could have clients. Since a lot of the services in the
TSSN interact independently from users, the number of clients
that are available to users is actually smaller.

One of the aspects of clients in the TSSN is the management
of the sensors. The Sensor Management service (see IV-D1)
provides this among other things like retrieving the location of
a particular Sensor Node. Another aspect is the management
of alarm notifications. For this purpose the Alarm Reporting
service (see Figure 10) defines various management operations
for clients.

To facilitate the use of those clients, a Command Center
Graphical User Interface was implemented that works just like
a desktop application. This is in addition to the command line
interface that every client provides using the Apache Commons
Command Line Interface (CLI) library.

4) Modules: Axis2 provides the possibility to “plug in”
modules that add functionality or change the way a service
behaves. This allows a specific capability to be shared among
different services without having to implement it in each of
them. In general, the web service specifications that are used
in Axis2 are implemented as modules. For more information
see IV-A1b.

a) Ping: In order to check the status of a particular
service Axis2 provides a module that adds an operation called
pingService to a service. This can be used to check the status
of either a specific operation or all operations that the service
defines. The client part that actually uses this operation was
not part of Axis2 and had to be implemented by the author.

b) Logging: Especially for debugging purposes and per-
formance evaluations, it is of great benefit to be able to see
the raw SOAP messages that are sent and received. A logging
module was implemented to provide this functionality. In

particular the following information is captured of each SOAP
message:

• Time when the message was sent or received
• Service which is used
• Operation that is being executed
• Direction of the message, which can be either incoming

or outgoing. Note that there are special directions that
deal with incoming and outgoing faults.

• From address of the message
• Reply to address that may differ from the From address
• To address of the message
• Schema element that is being “transported” as part of

the operation containing the request parameters or the
response elements

• Size of the message in bytes
• Message which represents the entire SOAP message in a

readable form
In terms of analyzing the Transportation Security SensorNet

and its performance the logging module was engaged in
all services. Quantitive results obtained using the logging
capability can be found in [2], [3], [4]; a tool to visualize
and animate the timing of the messages is described in [4].

c) Addressing: An implementation of the WS-Addressing
specification as described in [36], [37] comes as part of the
addressing module in the Axis2 core. It fully supports all
components of the standard and its ReplyTo and RelatesTo
fields are used among other things to allow for asynchronous
communication (see IV-A6) in the TSSN.

d) Savan: The Savan module enables web services and
clients in Axis2 to make use of various forms of subscription
mechanisms as defined by the WS-Eventing specification [20].

e) Rampart: In order to provide security according to
the WS-Security specification [38] for the TSSN the Rampart
module was developed by Axis2. It makes extensive use of
the WS-SecurityPolicy standard described by Lawrence et al.
[39].

5) Subscriptions: Subscriptions are a fundamental part of
the overall architecture of the TSSN. They are used by the
Alarm Processor at the VNOC as well as in the MRN.
These web services, that act as information publishers, utilize
the Savan module to provide the operations defined in WS-
Eventing.

6) Synchronous and asynchronous communication: By de-
fault Axis2 uses request-response in a synchronous manner.
This means that the client has to wait and is therefore blocking
until it receives the response from the service. In certain
scenarios, for instance when the service needs a large amount
of processing time, the client can experience timeouts. Fur-
thermore, in the TSSN where the MRN is only intermittently
connected to the VNOC, synchronous communication shows
its limitations. A better option is to make the communication
between services asynchronous. This resolves timeout issues
and deals with connections that are only temporary. The
following aspects need to be taken into consideration when
using asynchronous communication:

a) Client: The client needs to make changes in regard to
the how the request is sent out. Axis2 provides a low-level non-
blocking client API and additional methods in the service stubs

10

that allow callbacks to be registered. These AxisCallbacks need
to implement two methods, one that is being invoked whenever
the response arrives and the other to define what happens in
case of an error.

b) Transport Level: Depending on the transport protocol
that is being used, Axis2 supports the following approaches.

• One-way uses one channel for the request and another
one for the response such as the Simple Mail Transfer
Protocol (SMTP)

• Two-way allows the same channel to be used for the
request and the response, for example HTTP

For asynchronous communication to work the two-way
approach was modified through the Axis2 client API which
provides the option of using a separate listener. This tells
the service that it is supposed to use a new channel for the
response. In order to correlate request and response messages
Axis2 makes use of the WS-Addressing specification, in par-
ticular the RelatesTo field.

c) Service: The final piece of asynchronous communica-
tion is to make the service processing asynchronous as well.
This is done by specifying asynchronous message receivers in
the services configuration in addition to the synchronous ones.
Axis2 then uses the ReplyTo field of the WS-Addressing header
in the client as a sign to send an immediate acknowledge of
the request back to it. Furthermore it processes the request
in a new thread and sends the response out when it is done,
allowing the communication to be performed in asynchronous
manner completely.

There exist various forms of transport protocols that are
suitable for asynchronous communication. Axis2 by default
supports HTTP, SMTP, JMS and TCP as transports but other
transports can easily be defined and plugged in. The Java
Message Service (JMS), for instance, makes use of queues
which allow clients and services to store on them and retrieve
messages in a flexible manner. This is essential for satellite
communication which and discussed in detail in [3].

B. TSSN Common Namespace

Elements are often shared among a variety of services. Since
defining the same element over and over again is neither a
scalable nor maintainable approach, it makes sense to specify
a common namespace for them and let the web services that
want to use them, include them. In the TSSN these shared
elements are part of the TSSN Common namespace.

C. Mobile Rail Network

The MRN is a collection of services that is located on a
train or in a rail yard. Its services provide the abilities to
manage sensors, monitor them and propagate sensor alerts to
the VNOC. This section describes them in detail.

1) Sensor Node: The Sensor Node contains the actual
sensor monitoring and management application and its com-
ponents are shown in Figure 5. It provides several abstraction
layers that allow various forms of sensors to be used. The
current implementation makes use of cargo cable seals from
Hi-G-Tek (HGT) [35]; these are considered one type of sensor

Sensor Node

Sensor Data
Processing

HGT Sensor

SAS Interface

Location Interface

Sensor Management
Interface

AVL Reader

GPS Sensor Subscription
Registry

Notification Process

Sensor
Registry

Sensor
Data

HGT Sensor

HGT Sensor

HGT Sensor

SOS Interface

Fig. 5. Mobile Rail Network Sensor Node

Alarm Processor

Alert
Processing

SAS Interface

Alert Interface

Monitoring State
Interface

Subscription
Registry

Notification Process

Monitoring
State

Sensor Event
Interface

Fig. 6. Mobile Rail Network Alarm Processor

in the TSSN. Interaction with these sensors is performed
using a (HGT) Automatic Vehicle Location (AVL) reader. The
Sensor Node implements the functionality that allows higher
level management of the sensors, e.g., here a collection of
intelligent cargo seals connected to a series of containers, and
the data that they provide through the use of a sensor registry,
the sensor data storage and sensor data processing. Attaching
a GPS sensor to the Sensor Node allows sensor events to
be tagged with the specific location that they appeared at.
The core functionality of the Sensor Observation Service that
allows the service to offer its capabilities and observations is
implemented. Furthermore, a subscription registry is available
for alert notifications.

2) Alarm Processor: The Alarm Processor on the MRN
performs an initial filtering of sensor events generated by the
Sensor Node. It subscribes to of all events of the Sensor Node,
providing interfaces for generic sensor events as well as sensor
alerts. Alerts reported to the Alarm Processor include potential
alarms that the Sensor Node reports, GPS acquisitions and
losses, and status messages of the monitoring application such
as when it is started and stopped. In case the data is not
as complex as an alert, the event element provides a simple
structure with a timestamp and a data field.

The Alarm Processor handles alerts and events that it

11

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Fig. 4. Mobile Rail Network message overview

Sensor Management

Message Relay
Process

Location Interface

Monitoring State
Interface

Sensor Management
Interface

Fig. 8. Virtual Network Operation Center Sensor Management

receives from the Sensor Node and classifies them into ei-
ther information or security alarms depending on its current
monitoring state. It is also responsible for deciding whether or
not to forward the alarm to the VNOC for further processing
and possible transmission to the decision maker.

D. Virtual Network Operation Center

The VNOC as shown in Figure 7 represents the management
facility of the TSSN and consists of services that receive
and process alerts received from MRN. It works with the
TDE to associate shipment and trade information with a
particular alert. Furthermore, the Alarm Reporting service
provides clients with the ability to be notified upon specific
events. The processes that are involved in performing these
tasks are the topic of this section.

1) Sensor Management: The Sensor Management service
(Figure 8) is responsible for controlling sensors and alarm
reporting. It provides methods for starting and stopping sensor
monitoring. Additionally the monitoring state which defines
how alerts are interpreted and processed can be specified. The
Sensor Management service essentially relays these “control”
messages to the according MRN. Another functionality that is
provided is the ability to query for a specific MRN’s location.

Alarm Processor

SAS Interface

Alarm Interface

Subscription
Registry

Notification Process

Esper
Event

ProcesingEsper
Rules

Fig. 9. Virtual Network Operation Center Alarm Processor

The implementation details of the interfaces that it provides
to clients are described in the following.

The Sensor Management service allows the control of
Sensor Nodes and their monitoring state. Additionally, it is
able to retrieve the location of Sensor Nodes.

2) Alarm Processor: In contrast to the “basic” processing
that is performed by the Alarm Processor at the MRN, the
Alarm Processor as shown in Figure 9 at the VNOC has
more resources such as the associated shipment and trade
information available which is provided by the TDE and
can therefore process alarms in a more complex way. This
advanced filtering and processing is done using a complex
event processing system called Esper developed by Bernhardt
et al. [40].

Esper works on the basis of sliding windows in which events
that are close together on the time axis are analyzed and
correlated. It also supports using historical data from a variety
of sources. An efficient query and filtering language called
Event Processing Language allows for the most complex
scenarios to be implemented. In the TSSN it is used for
instance to filter out alarms for which shipment information
could not be retrieved from the TDE and mark them as security
notifications.

The MRN Alarm operation is used as a notification interface

12

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 7. Virtual Network Operation Center message overview

Alarm Reporting

Reporting Management
Interface

Alarm History
Interface

Notification Process

Alarm
Database

Alarm Interface

Reporting Management
Process

Reporting
Database

Hibernate
Reporting
Mappings

Hibernate
Alarm

Mapping

Fig. 10. Virtual Network Operation Center Alarm Reporting

for alarms from the Alarm Processor on the MRN. The Alarm
Processor service subscribes to alarms from its counterpart on
the MRN. Upon receiving an alarm, shipment data is retrieved
from the TDE and attached to the original alarm. Esper then
processes the alarm and passes it on to the Alarm Reporting
service.

The Alarm Processor at the VNOC primarily provides
functionality for the MRN to deliver alert notifications. It
uses Esper to perform complex event processing, taking into
consideration alert data and information from the TDE, and to
forward alarms to the Alarm Reporting service.

3) Alarm Reporting: The Alarm Reporting service (Figure
10) deals with the following two aspects. First, it stores alarms
long term to allow for in-depth reporting and analysis. Second,
clients that want to be notified of particular alarms can register
with the Alarm Reporting service. Whenever alarms occur
notifications are sent out to the registered clients via email
and/or SMS accordingly.

For long term data storage and to maintain a registry of the
client notifications the Alarm Reporting service makes use of
the MySQL database. In order to remain flexible and provide
an abstraction layer to the core database functionality a tool
called Hibernate [33] was utilized. An excellent introduction
to the object-relational mapping is provided by Bauer et al.
[41]. The main advantage is that objects referenced in code can
easily be persisted into a relational database and vice versa.
The only thing that needs to be defined is the mapping. Once
that has been defined Hibernate takes care of the rest.

Since the objects that are being stored in the database are
defined using XML schemas and then automatically compiled
into Java objects during the build process, it makes sense to
specify the mappings in XML as well. This is done in the
TSSN. Another approach that is supported by Hibernate is
using annotations within the Java objects themselves. This is
not possible because of the aforementioned build process as
the objects would have to be reannotated at every build.

The registry that is used for notifications contains alarm
contact mappings that specify what kind of alarms a specific
contact wants to be notified of. In case the contact wants to

13

TDE

TradeDataExchange

VNOC

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 11. Trade Data Exchange message overview

Trade Data Exchange

Shipment Information
Interface

Alarm Interface

Shipment
Information

Alarm
Database

Fig. 12. Trade Data Exchange Service

receive SMS notifications, a SMS provider has to be specified
as well.

The Alarm Reporting service receives alarm notifications
from the Alarm Processor at the VNOC. It provides a notifi-
cation interface primarily for the subscription of alarms from
the Alarm Processor. The Alarm Reporting service subscribes
to alarms and provides this operation for its notifications. An
alarm here is a combination of the tssn:MRN AlarmBean and
shipment and trade information received from the TDE.

E. Trade Data Exchange

The Trade Data Exchange [42], as shown in Figure 11, in a
sense represents a shipment and other trade data information
provider. It aims to be a collection of heterogeneous systems
that stores and manages the business aspects of a transport
of goods. This is due to the fact that there is a variety of
different systems implemented by the parties that participate
in the transport chain (see II-A and II-C). Some provide route
information while others manage contracts and shipment data.
For the current implementation of the TSSN this “collection”
of information and management services is combined into a
single service, the TDE service.

The TDE service (Figure 12) interacts with the Alarm
Processor at the VNOC. Upon request it provides shipment

and trade information for a specified alarm. It also provides
functionality that can be used for long term alarm storage,
although in its current implementation fairly limited. Since
the service was designed externally, the elements used are not
compatible to the TSSN common elements or any of the other
services.

F. Open Geospatial Consortium Specifications

As described before, the amount of work that is required
to fully implement OGC specifications such as the Sensor
Observation Service and the Sensor Alert Service is immense.
The focus of the first stage of the implementation of the TSSN
is on the sensor management and alarm notification capa-
bilities. However, at the MRN the Sensor Node provides an
implementation for the Sensor Observation Service as defined
by the OGC. Furthermore, services in the TSSN that utilize
subscriptions, in particular the Alarm Processor, are able to
receive subscribe requests and publish alerts in a manner that
is similar to the Sensor Alert Service. The difference to the
proposed SAS specification is that the services that subscribe
are already aware of the capabilities, sensor types and alert
types. Therefore the operations that allow the retrieval of
this information need to be implemented in order to be fully
compliant.

V. RESULTS

Several experiments were performed at various development
stages of the TSSN. First, lab tests were conducted in order
to ensure the functionality of the individual web services and
their interactions.

Then, as described in [2], truck trials were completed to
test basic interaction of the implemented web services and
feasibility of hardware components and sensors in a mobile
environment. The message exchanges between web services
were correct and the system was able to recover from dropped
communication links and lost GPS fixes. In addition, it was
found that the read range of the sensors used is about 400
meters.

A short haul rail trial was conducted after the successful
completion of truck tests. Results of the short haul rail trial
are found in [2]. One of the goals was to determine the
performance of the TSSN when detecting events on intermodal
containers in a rail environment. Furthermore SMS message
and email notification of events was investigated and data
collected that could be used in the modeling of system trade-
offs and communication models. The system performed well:
the time it took from detecting an event to generating an alert
was about 2 seconds and the average delivery time of the
alert was about 12 seconds. This is well within the bounds
of the requirements of the transportation industry for efficient
tracking and monitoring of cargo. Note that for the short haul
trial a GSM communication link was used that proved to be
stable and reliable. This allowed the web services to interact
synchronously with each other.

Enhancements made to the TSSN to work well in low band-
width mobile bandwidth limited and intermittently connected
monitoring environments are described in [3]. In particular, the

14

communication link between the MRN and the VNOC was
changed to a dial-up satellite connection and the web services
were adapted to utilize a distributed queuing approach and
hence communicate asynchronously. The viability of these ad-
justments was tested in a long haul rail trial in Mexico. Again
the TSSN worked well and was able to transmit messages in
about 12 seconds whenever connectivity was established. In
case the satellite link was down and needed to be established
it took about 10 minutes on average to deliver messages from
the MRN to the VNOC. However the average case of about 7
minutes per message transmission through the system is found
to be in range of mobile monitoring environments.

VI. CONCLUSION

The implementation of the Transportation Security Sensor-
Net using a Service Oriented Architecture works. Testing has
been completed in a lab environment as well as in the real
world and TSSN was evaluated in [2], [3], [4]. The complete
system provides a web services based sensor management
and alarm notification infrastructure that is built using open
standards and specifications. Particular functionality within the
system has been implemented in web services that provide
interfaces according to their respective web service specifica-
tions.

Using standards from the Open Geospatial Consortium al-
lows the integration of the system into Geographic Information
Systems. Although not all the interfaces are fully implemented
as of summer 2009, the basic Sensor Observation Service and
Sensor Alert Service are. Other OGC specifications can be
integrated a lot easier now because enhancements to the Axis2
schema compiler have been made by the author (see IV-A1b).

WS-Eventing plays an important role in the Transportation
Security SensorNet as it is essential for the alarm notification
chain. The specification that is used by all the clients and
services is WS-Addressing. Note that HTTP, which represents
the underlying transport layer of most the web services,
already provides an addressing scheme. This however, is not
as useful as it seems because web services may change their
transport layer and messages sometimes require complex
routing. The reasoning behind this and other things have been
explained in detail.

Overall the TSSN provides a Service Oriented Architecture
for Monitoring Cargo in Motion Along Trusted Corridors.
This web services based approach allows for platform and pro-
gramming language independence and offers compatibility and
interoperability. The integration of SOA, OGC specifications
and sensor networks is complex and difficult. As described
in III-H, most systems and research focuses either on the
combination of SOA and OGC specifications or on OGC
standards and sensor networks. However, the TSSN shows
that all three areas can be combined and that this combination
provides capabilities to the transportation and other industries
that have not existed before. In particular, web services in a
mobile sensor network environment have always been seen
as slow and producing a lot of overhead. The TSSN, as
shown by the results in [2], [3] demonstrates that with proper
architecture and design the performance requirements of the
targeted scenario can be satisfied.

Furthermore, the Transportation Security SensorNet and its
Service Oriented Architecture allow sensor networks to be
utilized in a standardized and open way through web services.
Sensor networks and their particular communication models
led to the implementation of asynchronous message transports
in SOA and are supported by the TSSN.

VII. FUTURE WORK

After evaluating the current implementation, several points
of improvement were identified.

a) Security: The current system only provides entry
points for the WS-Security in terms of the Rampart module.
There are several issues in the current implementation of
the module, especially with regard to attaching policies to
web services and clients. This is discussed in [5]. Further
development is underway to implement WS-Security. In be-
tween the Virtual Network Operation Center and the Mobile
Rail Network communication is secured by establishing a
Virtual Private Network (VPN). However, this is not practical
using a satellite link because of performance reasons. Sensors
management is done at the Sensor Node but as of now there
is no support for the secure handover to other Sensor Nodes.
The remote management systems need to be improved in this
area.

b) Service Discovery: Due to several problems in the
specific implementation of the UDDI that was used, for the
trials most of the services were made aware of the other
services through the means of configuration instead of service
discovery. Since using a UDDI provides far better scalability,
it is an essential piece of future versions of the TSSN.

c) Multiple service clouds: During the trials all services
were unique which in an operational system this is not the
case. There are issues that need to be explored in dealing with
multiple versions not only of single web services but multiple
VNOC’s and MRN’s. This is especially important when it
comes to managing policies and subscriptions properly.

ACKNOWLEDGMENT

This work was supported in part by Oak Ridge National
Laboratory (ORNL) Award Number 4000043403. This mate-
rial is also partially based upon work supported while V. S.
Frost was serving at the National Science Foundation.

The authors wish to acknowledge Kansas City Southern
Railway for their participation in the rail trials. We would also
like to acknowledge the support of EDS, an HP company, and
Kansas City SmartPort, Inc. our partners on this project.

REFERENCES

[1] M. Wolfe, “In this case, bad news is good news,” Journal of Com-
merce, July 2004, www.ismasecurity.com/ewcommon/tools/download.
aspx?docId=175.

[2] D. Fokum, V. Frost, D. DePardo, M. Kuehnhausen, A. Oguna, L. Searl,
E. Komp, M. Zeets, D. Deavours, J. Evans, and G. Minden, “Experiences
from a transportation security sensor network field trial,” in GLOBE-
COM Workshops, 2009 IEEE, 30 2009-Dec. 4 2009, pp. 1–6.

[3] M. Kuehnhausen and V. S. Frost, “Application of the Java Message
Service in Mobile Monitoring Environments,” Information Telecommu-
nication and Technology Center, University of Kansas, Lawrence, KS,
Tech. Rep. ITTC-FY2010-TR-41420-18, February 2010.

15

[4] ——, “Framework for Analyzing SOAP Messages in Web Service
Environments,” Information Telecommunication and Technology Center,
University of Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2010-TR-
41420-20, March 2010.

[5] E. Komp, V. S. Frost, and M. Kuehnhausen, “Implementing Web
Services: Conflicts Between Security Features and Publish/Subscribe
Communication Protocols,” Information Telecommunication and Tech-
nology Center, University of Kansas, Lawrence, KS, Tech. Rep. ITTC-
FY2010-TR-41420-19, February 2010.

[6] D. Group, “The value of standards,” Delphi Group, Ten Post Office
Square, Boston, MA 02109, Survey, Jun. 2003, www.ec-gis.org/sdi//ws/
costbenefit2006/reference/20030728-standards.pdf.

[7] M. Reichardt, “The Havoc of Non-Interoperability,” OGC, OGC
White Paper, Dec. 2004, http://portal.opengeospatial.org/files/?artifact
id=5097.

[8] L. McKee, “The Importance of Going “Open”,” OGC, OGC White
Paper, Jul. 2005, http://portal.opengeospatial.org/files/?artifact id=6211.

[9] M. Irmen, “10 ways to reduce the cost and risk of global trade
management,” Journal of Commerce, March 2009, http://www.joc.com/
node/410216.

[10] L. F. Cabrera, C. Kurt, and D. Box, “An Introduction to the Web Services
Architecture and Its Specifications,” Microsoft, Microsoft Technical
Article, Oct. 2004, http://msdn.microsoft.com/en-us/library/ms996441.
aspx.

[11] D. Nickul, L. Reitman, J. Ward, and J. Wilber, “Service Oriented
Architecture (SOA) and Specialized Messaging Patterns,” Adobe, Adobe
Article, Dec. 2007, www.adobe.com/enterprise/pdfs/Services Oriented
Architecture from Adobe.pdf.

[12] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC Sensor Web
Enablement: Overview And High Level Architecture,” OGC, OGC
White Paper, Dec. 2007, http://portal.opengeospatial.org/files/?artifact
id=25562.

[13] X. Chu, T. Kobialka, and R. Buyya, “Open sensor web architecture:
Core services,” in In Proceedings of the 4th International Conference
on Intelligent Sensing and Information Processing. Press, 2006, pp.
1–4244, http://www.gridbus.org/papers/ICISIP2006-SensorWeb.pdf.

[14] X. Chu, “Open sensor web architecture: Core services,” Master’s the-
sis, University of Melbourne, Australia, 2005, http://www.gridbus.org/
reports/OSWA-core%20services.pdf.

[15] D. Fitzpatrick, D. Dreyfus, B. A. Hamilton, M. Onder, and J. Sedor,
“The electronic freight management initiative,” U.S. Department of
Transportation, Federal Highway Administration, Tech. Rep. FHWA-
HOP-06-085, April 2006.

[16] K. Troup, , D. Newton, M. Wolfe, and R. Schaefer, “Columbus electronic
freight management evaluation - achieving business benefits with efm
technologies,” Science Applications International Corporation (SAIC),
Tech. Rep., March 2009.

[17] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “The physiology of
the grid: An open grid services architecture for distributed systems inte-
gration,” in Open Grid Service Infrastructure WG, Global Grid Forum,
Jun. 2002, http://www.globus.org/alliance/publications/papers/ogsa.pdf.

[18] T. Bellwood, L. Clement, D. Ehnebuske, A. Hately, M. Hondo, Y. L.
Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von
Riegen, “UDDI Version 3.0,” OASIS, OASIS Specification, Jul. 2002,
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[19] T. Bellwood, “Rocket ahead with UDDI V3,” IBM, IBM Article,
Nov. 2002, http://www.ibm.com/developerworks/webservices/library/
ws-uddiv3/.

[20] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham,
D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard,
S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S. Weerawarana,
and D. Wortendyke, “Web services eventing (ws-eventing),” W3C, W3C
Member Submission, Mar. 2006, http://www.w3.org/Submission/2006/
SUBM-WS-Eventing-20060315/.

[21] A. Friis-Christensen, N. Ostländer, M. Lutz, and L. Bernard,
“Designing service architectures for distributed geoprocess-
ing: Challenges and future directions.” Transactions in GIS,
vol. 11, no. 6, pp. p799 – 818, 20071201. [On-
line]. Available: http://search.ebscohost.com.www2.lib.ku.edu:2048/
login.aspx?direct=true&db=aph&AN=28048261&site=ehost-live

[22] C. Kiehle, K. Greve, and C. Heier, “Requirements for
next generation spatial data infrastructures-standardized web
based geoprocessing and web service orchestration.” Transactions
in GIS, vol. 11, no. 6, pp. p819 – 834, 20071201.
[Online]. Available: http://search.ebscohost.com.www2.lib.ku.edu:2048/
login.aspx?direct=true&db=aph&AN=28048260&site=ehost-live

[23] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference Model for Service Oriented Architecture
1.0,” OASIS, OASIS Standard, Oct. 2006, http://docs.oasis-open.org/
soa-rm/v1.0/.

[24] H. Haas, D. Booth, E. Newcomer, M. Champion, D. Orchard, C. Ferris,
and F. McCabe, “Web services architecture,” W3C, W3C Note, Feb.
2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[25] M. Kalin, Java Web Services: Up and Running. O’Reilly, February
2009.

[26] L. S. Searl, “Service Oriented Architecture for Sensor Networks Based
on the Ambient Computing Environment,” ITTC, ITTC Technical
Report, Feb. 2008, www.ittc.ku.edu/sensornet/trusted cooridors/papers/
41420-07.pdf.

[27] E. Chinthaka, “Web services and Axis2 architecture,” IBM, IBM
Article, Nov. 2006, https://www.ibm.com/developerworks/webservices/
library/ws-apacheaxis2/.

[28] A. S. Foundation, “XMLBeans,” Jul. 2008. [Online]. Available:
http://xmlbeans.apache.org/

[29] J. Fialli and S. Vajjhala, “Java architecture for xml binding (jaxb) 2.0,”
Java Specification Request (JSR) 222, October 2005.

[30] D. Sosnoski, “JiXB,” Mar. 2009. [Online]. Available: http://jibx.
sourceforge.net/

[31] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second
edition),” W3C, W3C Recommendation, Apr. 2007, http://www.w3.org/
TR/2007/REC-soap12-part0-20070427/.

[32] D. Booth and C. K. Liu, “Web services description language (WSDL)
version 2.0 part 0: Primer,” W3C, W3C Recommendation, Jun. 2007,
”http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626.

[33] R. Hat, “Hibernate Reference Documentation 3.3.1,” Tech. Rep.,
Sep. 2008, http://www.hibernate.org/hib docs/v3/reference/en-US/pdf/
hibernate reference.pdf.

[34] EsperTech, “Esper - Event Stream and Complex Event Processing for
Java.” [Online]. Available: http://www.espertech.com/

[35] Hi-G-Tek. [Online]. Available: http://www.higtek.com/
[36] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0

- core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[37] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and
M. Hadley, “Web services addressing 1.0 - SOAP binding,”
W3C, W3C Recommendation, May 2006, http://www.w3.org/TR/2006/
REC-ws-addr-soap-20060509.

[38] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006, http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[39] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Bar-
bir, and H. Granqvist, “WS-SecurityPolicy 1.2,” OASIS, OASIS Stan-
dard, Jul. 2007, http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.2/
ws-securitypolicy.pdf.

[40] T. Bernhardt and A. Vasseur, “Event-driven application servers,” 2007.
[Online]. Available: http://dist.codehaus.org/esper/JavaOne TS-1911
May 11 2007.pdf

[41] C. Bauer and G. King, Hibernate in Action. Manning, 2005.
[42] K. SmartPort, “Trade Data Exchange - Nothing short of a logistics

revolution,” Journal of Commerce, November 2008. [Online]. Available:
http://www.joc-digital.com/joc/20081110/?pg=29

