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ABSTRACT

A simulation model developed at the University of Kansas Telecommunica-
tions and Information Sciences Laboratory models an Ethernet-like Local Area
Network., This simulation model is used to predict the performance of a
voice/data system. The SLAM simulation language is used to model the Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) communications proto-
col. The software developed simulates a CSMA/CD network and is fully documen-
ted. The simulation model was developed so that networks with a combined
loading of voice and data could be analyzed. Simulation results were collec-
ted to determine the feasibility of using a multirate voice coding system for
load control. The voice coding rate will be decreased when the network traf-
fic is high., The decrease in voice coding rate causes less voice packets to
access the network and decreases the voice quality. The method of changing
the voice coding rate is implemented as a feedback system which uses the rate
of collisions per millisecond to obtain an indication of the amount of traffic
on the network. The methods available for coding the voice signal at multiple
rates are not discussed in detail,

The CSMA/CD simulation model has been validated, a comparison of the
simulated results to Shoch's measurements shows that the model accurately
predicts the performance of a real system. It is shown that the performance
of CSMA/CD Local Area Networks, which have a combined loading of voice and
data, can be improved by using multirate voice coding for load control. The
simulation results of the multirate voice coding system show that the feedback
system properly adjusts to changing load conditions and that the use of multi-
rate voice coding for load control allows a considerable increase in the

number of conversations.
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1.0 INTRODUCTION

The desire to have a simulation model of the Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) communications protocol, and the
ability to perform simulation studies of voice/data networks prompted this
work. The CSMA/CD protocol is perhaps the mést widely used packet communica-
tion system for Local Area Networks. This is due to the extensive application
of the Ethernet Local Area Network (LAN). The goal of this research is to
develop a CSMA/CD simulation model which can be used for performance studies
of Ethernet-like computer communication networks. The simulation model is
flexible so that any network configuration can be studied. The specific study
presented here gives the performance of a voice/data network. The voice/data
network uses variable rate voice coding for load control.

This report is divided into three chapters. Chapter 2 explains the SLAM
simulation language which was used to model the CSMA/CD network. Chapter 3
gives a description of the code developed which simulates the CSMA/CD net-
work. Chapter 4 describes the voice/data simulation study.

The Simulation Language for Alternative Modeling (SLAM) was used as the
basic tool for developing the CSMA/CD simulation model. SLAM is a multipur-
pose simulation language and is useful for modeling communication networks.
SLAM provides the flexibility needed to reconfigure the CSMA/CD simulation
model to any particular network. 1In Chapter 2, the simulation language SLAM
is introduced in a general sense, with reference to communication network
modeling. There are many aspects of SLAM which have not been used in the
CSMA/CD simulation model, these aspects are not covered in Chapter 2. Chapter
2 has been included for completeness, the reader can understand the CSMA/CD
simulation model by referring to this chapter without referencing the avail-

able literature on SLAM.



The CSMA/CD simulation model is fully documented in Chapter 3, This
chapter has been included so that expansion or modification of the software
can be done easily. Further research may involve performance studies of a
particular network that has a different configuration, but uses the basic
CSMA/CD protocol, With the aid of Chapter 3, the analyst can modify the code
with a minimum amount of effort, The CSMA/CD simulation model was initially
developed for voice/data simulation studies, but can be configured for perfor-
mance studies of any Ethernet-like network.

The voice/data simulation study requires that the CSMA/CD model be modi-
fied. The original simulation model was for only data traffic. Voice packets
require a certain amount of special attention. The voice packets are gene-
rally smaller than the data packets. The voice packet interarrival time is
constant, whereas the data packet interarrival time is generally assumed to be
exponential. There have been several previous studies [12, 13, 14] done to
determine the performance of a LAN that has a combined loading of voice and
data. None of the previous studies address the problem discussed in Chapter
4. The simulation study described in Chapter 4 has the voice coding rate
changing dynamically according to the level of network traffic. By lowering
the voice coding rate when the network traffic is high, the voice quality is
traded for network 1load. If the voice coding rate is lowered, less voice
packets are attempting to transmit over the network, and a larger number of
data packets can be transmitted. When the traffic decreases, the voice coding
rate will be increased which causes more voice packets to access the net-
work. By lowering the voice coding rate when the traffic increases, the
network is able to handle a greater amount of data traffic without a substan-
tial increase in the data packet delay. In addition, more voice conversations

can take place when the multirate voice coding is used. If there are few



conversations, the voice coding rate remains high, however, if the number of
conversations increases the voice coding rate will be lowered so that a grea-
ter number of conversations can take place,

The ability of the same voice source to generate packets at different
coding rates has been assumed. That is, the use of multirate voice coding
techniques has been assumed in Chapter 4, however, voice coding is not the
subject of this paper. Chapter 4 is a proof of concept study, which shows
that the use of variable rate coding can improve the network performance of

voice/data CSMA/CD packet communication networks.



2.0 SIMULATION WITH SLAM

In this chapter, the Simulation Language for Alternative Modeling (SLAM)
will be introduced to the extent that the CSMA/CD simulation model can be
understood. Therefore, this chapter will be necessarily brief. SLAM is a
useful simulation tool, for a complete description of SLAM see [1]. This
chapter is also intended to be a quick reference or tutorial covering the
basic SLAM concepts.

SLAM is a multipurpose simulation tool which is convenient for modeling
communication networks. In SLAM, there are three approaches to simulation.
The first is Network Modeling. Here the user can represent a process and the
flow of entities through the process. The representation is done using blocks
or nodes which are provided by SLAM. The user essentially sets up a block
diagram using the nodes provided by SLAM. The second approach is known as
Discrete Event Modeling. It allows the user greater flexibility than the
Network approach. The added flexibility comes from having greater control
over the simulation. In Discrete Event Mcdeling the user models the changes
in the state of a system which occur at discrete points in time. The third
modeling approach is Continuous Modeling. This method allows the user to
model systems which change- continuously over time and can be described by a
set of differential equations. The continuous Modeling approach was not used
in the CSMA/CD simulation model, to be described in Chapter 3, and will not be
discussed in this chapter.

In SLAM an event calendar is set up. This event calendar is a file that
holds the specific events which are due to occur. Events are placed on the
calendar in chronological order by SLAM, and at the proper time are execu-
ted. SLAM relieves the user from keeping track of the order in which execu-

tion is to take place. In a Network Model, SLAM automatically places events



on the event calendar. In a Discrete Event model, the user places events on
the calendar and can remove events from the calendar.

In this chapter, the Network blocks used to model the CSMA/CD system will
be described. The Discrete Event subroutines used in the CSMA/CD simulation
model will also be described. The method of combining Network Modeling and
Discrete Event Modeling will also be discussed. Chapter 3 will describe the

CSMA/CD simulation model in detail.

2.1 Network Modeling

In the Network Modeling approach, the system to be simulated is put
together using the network blocks provided by SLAM. The user is basically
putting together a block diagram of the system to be simulated. This approach
is very convenient for modeling queueing systems, such as the arrival of
packets to a node on a Local Area Network, and the build up of packets at the
node. Although the network blocks provided by SLAM can completely describe
the system, SLAM requires that certain statements be included in the model.
These statements are used to specify the number of attributes per entity, the
number of files used, and the length of the simulation, among other things.
The attributes are a list of variables which are used to describe certain
characteristics of the entity.

In this section, the SLAM Network Modeling blocks used in the CSMA/CD
simulation model will be described. That is, the specific SLAM blocks and
SLAM statements used to model the CSMA/CD network will be described. In

addition, the collection of statistics will be described.




2.1.1 SLAM Blocks

In this section, a brief description of the SLAM blocks used to model the
CSMA/CD network will be given. The CREATE block is used to generate packets
at a user specified rate. The structure of the CREATE block is as follows:

CREATE, TBC, TF,MA ,MC, M;

where,

TBC = time between creations, can be constant or random

TF = time 1st entity is created

MA = mark time, places creation time in the MAth attribute
MC = maximum number of creations

M = number of branches

The value specified for TBC can be a constant or samples from a random distri-
bution., In SLAM there are several distributions provided, they are listed in
Table 7-1 of [1). The semicolon is the last character on every line of code,
SLAM ignores everything after the semicolon. As entities or packets in the
case of the CSMA/CD network are generated using the CREATE block, an attribute
array is given to each packet. The attribute array is essentially a group of
variables which can be used to specify certain characteristics of the specific
packet. The packet will carry the list of attributes as it travels through
the network. SLAM provides for altering and setting the attributes associated

with a particular entity, this is done using the ASSIGN block. The structure

of the ASSIGN block is given below.

ASSIGN, var=value,var=value,...,M;

where,

M = number of branches the entity is to be routed through
var = a SLAM variable

value = a SLAM variable, or a mathematical expression



Commonly used SLAM variables:

ATRIB(I) attribute I of the current entity

XX(T) global variable I

TNOW the current time in the simulation,

The QUEUE block is provided by SLAM to give the packets a location in the
network where they can wait to be serviced. The structure of the QUEUE block
is as follows:

QUEUE(IFL),IQ,0C;

where,

IFL = file number (location of storage), an integer value
10 = initial number of entities in queue

ocC = maximum number of entities allowed in queue,

The QUEUE block must be followed by an ACT block, or ACTIVITY block. The ACT
block represents servers or time delays in the system. The ACT block could be
used to represent a communication 1link in so much as the link merely causes a
time delay of the signal. The ACT block has the following structure.

ACT(N)/A,DUR,PROB or COND,NLBL;

where,

N = number of parallel servers

A = activity number

DUR = duration specified for the activity

PROB = probability specification for selecting the activity

COND = condition for selecting the activity

NLBL = end node label (required if end node is not the next node).

To destroy or delete the packets after they are finished in the system, or

for whatever reason the user may have, the TERM or TERMINATE block is used;

TERMINATE,TC;

-7-




where,
TC = end simulation after TC entities arrive to the TERMINATE block.
The RESOURCE block declares resources. The AWAIT block, like the QUEUE
block, is a place in the network where entities wait. However, the exit from
an AWAIT block does not depend on a server becoming idle. Exit from the AWAIT
block occurs when the resource specified is free. The FREE block releases a
resource when an entity arrives to the block. A resource has a resource
number associated with it. For example,
RESOURCE/THING1,1/THING2,2/THING5,5;
the resource number of thing! is 1, of thing2 is 2, and the resource number of
thing 5 is 3. SLAM automatically assigns resource numbers according to the
order in which the resources are declared. The 1, 2, and 5 specify the file
in which entities will wait for their resource. So, entities wait in file 1
for thingl (resource 1) to be freed and they wait in file 5 for thing5 (re-
source 3) to be freed,
The user can collect statistics on five types of variables, outlined
below.
COLCT, TYPE, ID, NCEL /HLOW /HWID , M; '
TYPE = statistics can be collected on five types of variables:
= FIRST (coll. stat. on time of 1st arrival, one value is recor-
ded during each run)
= ALL (coll. arrival time statistics for all entities)
= BETWEEN (time between the arrivals is collected as the statis-
tic of interest)
= INT(NATR) (collect statistics relating to the arrival time of
the entity minus the value of an atrib specified by NATR, the

statistic equals TNOW-ATRIB(NATR) )



ID =

M =
Histogram

NCEL

[}

HLOW =

HWID

NCEL

SLAM (the observation of a SLAM variable is recorded each time
an entity enters the node)

16 character (or less) identifier associated with a particular
COLCT node

number of branches

Parameters: ( NCEL, HLOW, HWID )

number of cells

upper limit of the tst cell

width of each cell e.qg.,
(infinity,01,(0,10],(10,20],(20,+infinity)

4, HLOW = 0, HWID = 10 (4/0/10)

2.1.2 SLAM Statements

The statements required by SLAM are outlined below. These statements

must be included in a SLAM model. The first statement in any SLAM simulation

model is the GEN statement, this statement provides general information about

a simulation.

The structure of the GEN statement is given by,

GEN,NAME, PROJECT, MONTH /DAY /YEAR , NNRNS, ILIST, IECHO, IXQT, IPIRH, ISMRY/FSN, I0;

where,
NAME

PROJECT

]

20 character field to identify the analyst

20 character field to identify the project

MONTH/DAY/YEAR = date entered as integers

NNRNS

ILIST

IECHO

IXQT

i

number of runs (default = 1)

= if YES a numbered listing of all input statements is
printed including any error messages

= if YES an echo summary report is printed

= 1f YES execution is attempted if no input errors were



detected
IRIRH = if YES the heading INTERMEDIATE RESULTS is printed prior

to execution of each simulation run

ISMRY/FSN = if ISMRY is YES the SLAM Summary Report is printed in
accordance with the next field specification, FSN
I0 = gpecifies the number of columns to be used for output

reports.

The second statement in all SLAM models is the LIMITS statement. 1In the
limits statement, the modeler specifys the number of SLAM files used, the
maximum number of attributes used, and the maximum number of concurrent en-
tries in the files. The SLAM files include those files used for QUEUE blocks
and AWAIT blocks. The structure of the LIMITS statement is given by,

LIMITS,MFIL,MATR, MNTRY;

where,

MFIL = largest file number used

MATR =  largest number of attributes per entity

MNTRY = maximum number of concurrent entries in all the files

MNTRY €  NNSET/(MATR+4)

NNSET

dimension of NSET/QSET (on the TISL VAX NNSET = 40000)

The NETWORK statement preceeds the network blocks in a SLAM model. So the
modeler would place the NETWORK statement before any SLAM blocks (CREATE,
ASSIGN, etc.). The network blocks are followed by the END statement. The
structure of the NETWORK and END statements are as follows,

NETWORK ,option,device;

if "option" = SAVE and "device" is set to a logical
unit number: causes the decoded network to be written

in binary form to the logical unit specified
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END;

The INIT statement specifies the time the simulation is to begin and
end. The INIT statement must be included in all SLAM models. The FIN state-
ment signifies the end of the SLAM input statements (network blocks and state-
ments), and is the last statement in all SLAM models, The structure of the
INIT and FIN statements are given by,

INIT, TTBEG, TTFIN;

TTBEG beginning time

TTFIN ending time

FIN;

2.1.3 Example 2-1

In this example, a communication network is being simulated. This net-
work has a single node and the channel is being modeled as a simple delay.
The model could be expanded to include several nodes and a more complicated
channel model. A listing of the SLAM code used to model this example is shown
below in Figure 2-1.

In Example 2-1, packets are being generated at the CREATE block, after
being created the packet will have its creation time placed in the first
attribute. As a packet enters the ASSIGN block, its second attribute gets the
value 1 placed in it and fhe third attribute gets the value 4096, and the
global variable xx(1) gets set to 100. Then the packet enters the BAWAIT
block, the packet will remain there until a unit of the resource PACK1 is
free. When the resource PACK1 is free, the previous packet has finished, and
the current packet will leave the AWAIT block and immediately branch to the
QUEUE node, labeled CHNL. The packet will have a zero wait time in the chan-

nel queue and will be serviced immediately in the ACT block. The ACT block
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GEN, ED FRIEDMAN, EXAMPLE, 3/14/85, 1, NO, NO;
LIMITS, 2, 3, 300; two files used, three attributes per packet, three hundred
i concurrent entries in the files

variables used:

L

atrib(1) = packet creation time

atrib(2) = node number

atrib(3) = packet length

xx{1) = mean service time in the channel

-

ETWORK;

RESQURCE/PACK1, 1; resource 1 is PACK1

CREATE, EXPON(50, 4), 100, 1; create packets with an exponential interarrival
time, with a mean of 50, generated using
the random number stream 4, create the first
packet at time 100, store the creation time
in atrib(1)

e me e

ASSIGN, ATRIB(2)=1. 0,
ATRIB(3)=4096. 0,

XX(1)=100.0, 1; assign attributes and the global variable
’ AWAIT(1), PACK1; packets wait at the node for the channel
l ACT, , » CHNL; immediate branch to the channel
: channel model
éHNL QUEUE(2); channel queue
; ACT/1, EXPON(XX(1),8); exponential service time in the channel with a
i mean of xx(1) using the random number stream 8
i FREE. PACK1/1; free one unit of resocurce 1 ( PACK1l ) when the
i packet is finished being serviced

COLCT, INT(1), TIME DELAY; «collect system delay statistics, TNOW-ATRIB(1)

TERM; terminate packets
END;
INIT,0,1000; +vun the simulation for 1000 time units
FIN;
Figure 2-1. SLAM code for Example 2-1, a simplified communications network.
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represents the delay through the channel which is distributed exponentially
with a mean of xx(1). When the packet leaves the ACT block, it enters the
FREE block where one unit of the resocurce PACK1 is released and sent back to
the AWAIT block which allows the next packet to begin the process. The output
of Example 2-1 will be a SLAM Summary Report showing the system delay statis-
tics, the file statistics, the service activity statistics, and the resource
statistics. The file statistics include the AWAIT, OQUEUE, and the event
calendar statistics, see Figure 2-2. |

The execution phase of a simulation begins by selecting the first event
on the event calendar. The processor advances the current simulated time,
TNOW, to the event time corresponding to this event. It processes the event
by performing all appropriate actions based on the decision logic associated
with the block type to which the entity is arriving. For example, if the
entity is arriving to the AWAIT block, the decision logic involved with reali-
zing the event consists of testing to determine if the resource is available;
if yes, the entity seizes the resource and exits the node; otherwise, the
entity is placed in the specified file and waits for the required resource.
Although the decision logic is different for each node, the logic will result
in one of three possible outcomes for the arriving entity:

1. The entity will be routed to another block;

2. The entity will be destroyed at the block; or

3. The entity will be delayed at the block based on the state of the

system,

In this section, the Network Modeling approach of SLAM has been outlined
so that the material in chapter 3 on the CSMA/CD simulation model can be
understood without referencing [1]. The advantage in using the Network ap-

proéch is that models can be developed gquickly. With a basic understanding of
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the SLAM blocks available, a user can implement a simulation in very 1little
time. Although useful, the Network approach has its limitations. For exam-
ple, the user cannot remove entries from the event calendar, or remove a

specific entry in a queue.

2.2 Discrete Event Modeling

Probably the greatest motivation for using the Discrete Event type of
modeling is the ability to do file manipulations. The user can remove entries
from a queue in any order desired, and can alter the event calendar. Suppose
the modeler wants to remove an event which is due to occur at some later time
so that the particular event will not occur, this can be done quite easily in
a Discrete Event model, but is impossible to do in a Network simulation. For
example, in the CSMA/CD model, packets enter the channel model and begin to
transmit if the channel has been sensed idle. At this point an event is
scheduled which signifies the end of the collision discrimination period (the
time from the beginning of transmission to the point where all the other nodes
realize that a node is transmitting). If a collision occurs, this event which
signifies the end of the collision discrimination period must be removed from
the event calendar.

Although this added flexibility is nice, it does not come without draw-
backs. The Discrete FEvent models tend to be much more lengthy and somewhat
more complicated than the Network models. If the user wanted to create pac-
kets without using the CREATE block, this would require several lines of code,
whereas in the Network model it is simply one statement. This is the reason
that combined Network/Discrete Event modeling is the preferred approach for

most applications, and is the topic of section 2.3.
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In this section, a brief overview of the Discrete Event modeling approach
is given. In SLAM, many built-in subroutines and functions are provided,
which relieve the user of much of the more complicated simulation aspects.
For example, SLAM automatically causes the execution of code at the proper
time, the user merely places an event on the event calendar, and SLAM will
execute that event in the proper chronological order.

This section is arranged into six subsections. The first describes the
INTLC, EVENT, and OTPUT subroutines, the second describes the SLAM subrou-
tines, the third describes the SLAM functions, the fourth section describes
the method of collecting statistics, and the fifth and sixth sections give

examples.

2.2.1 The INTLC EVENT and OTPUT Subroutines

In Discrete Event models, the modeler creates a DRIVER file or SLAM INPUT
FILE, and one or more FORTRAN files. The FORTRAN file(s) must contain an
EVENT subroutine (required), an INTLC subroutine, and an OTPUT subroutine
(INTLC and OTPUT are optional). The EVENT subroutine calls the user written
events. The user written events may or may not use the subroutines provided
by SLAM. The INTLC subroutine is used to initialize SLAM variables and user
defined variables, and to schedule an event to occur at sometime after the
beginning of the simulation. The OTPUT subroutine is used so that the modeler
can have any kind of output desired, in addition to the usual SLAM Summary
Report.

The DRIVER contains much of the same statements as a Network Model. That
is, the GEN,LIMITS,INIT, and FIN statements must be in the DRIVER. For exam-
ple,

GEN,ED FRIEDMAN,EXAMPLE, 3/14/85,NO,NO;
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LIMITS, 2,3,300;
INIT,O0,1000;
FIN;
is a valid DRIVER file.
In the event subroutine, the events created by the modeler are called.
If a specific model has three user written events called SENSE, TRANSMIT, and
PROPAGATE, the event subroutine would look like the following,
subroutine event(i)
go to (1,2,3),1i
1 call sense
return
2 call transmit
return
3 call propagate
return
end
The event code is the number to the left of the call statements. The event
code is passed to the event subroutine when the proper time for execution is

reached. Then the event subroutine calls the specific event as specified by

the event code.

2.2.2 SLAM Subroutines

The SLAM processor relieves the user from chronologically ordering events
on an event calendar. The user simply schedules an event to occur and SLAM
causes each event to be processed at the proper time in the simulation. The
events are scheduled using the schdl subroutine.

call schdl(kevnt,dtime,a)

kevnt = event code of the event being schedule, e.g., the event code of
event sense above is 1, and that of propagate is 3
dtime = the number of time units from the current time, TNOW, that the

event is to be processed
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a = can be a user defined vector or the atrib array

The schdl subroutine is probably the single most important subroutine in the
Discrete Event modeling approach. It allows the user to place events on the
event calendar. If the user wants an entity to pass through a given block of
code at a certain point in time, the schdl subroutine allows this to be done
easily. Suppose, for example, that the user wants to model the beginning of
transmission on an Ethernet type Local Area Network. After sensing the chan-
nel as 1idle, the packet must wait the interframe spacing before beginning
transmission. This can be done by using the schdl subroutine as follows,

call schdl(2,9.6,atrib)

where,
2 = the event code of the transmit event
9.6 = the interframe spacing
atrib = the attribute array

In SLAM a file provides a way to store the attributes of an entity, the
attributes will be stored according to some ranking with respect to the other
entities in the file. Each entity in a file has a rank which specifies its
position relative to the other members in the file. A rank of 1 denotes that
the entity is the first entry in the file. The user can specify the ranking
criterion, for example, first-in-first-out (FIFO) or last-in-first-out (LIFO)
etc. If the ranking criterion is not specified, SLAM assumes FIFO.

The NNQ(IFIL) function returns the number of entries in a file. For
example, x=nnq(1) sets x equal to the number of entries in file 1. To use a
SLAM function, the user must declare £he function as integer or real.

Like the QUEUE node, the filem subroutine stores entities in a file,

For example,

atrib(1)=tnow
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call

filem(1,atrib)

Places an entry into file 1 with its first atrib set equal to the current

time,

The

rmove subroutine removes an entry with rank nrank from file ifile and

places its attributes in the atrib array.

call

rmove{nrank,ifile,atrib)

For example,

call

call

Note:

rmove(2,3,atrib)

removes the second entry in file 3 and places its attributes in the
attribute array

rmove(nng(1),1,atrib)

removes the last entry in file 1 and places its attributes in the

attribute array

If the user attempts to remove an entry from a file with rank greater than

nng(ifile) a SLAM error will occur.

Consider

the following example,

Creating packets from several nodes in a network.

Each packet has its second attribute set to the node number.

Suppose for some reason, the packets from all the nodes must be
stored into a file using filem.

As the packets are removed from the file using rmove, the node that a
particular packet originated from would be known by checking the

value of the second attribute.

The copy subroutine causes the attributes of the nrank entry to be copied

into the

call

atrib array without removing the entry.

copy(nrank,ifile,atrib)
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For example,
call copy(10,5,atrib)
copies the attributes of the 10th entry in file 5 into the atrib

array.

2.2.,3 SLAM Functions

The mmfe(ifile) function sets a pointer to the first entry in file
ifile. For example, x=mmfe(7), sets x to point at the first entry (rank 1) in
file 7. The nsucr(ntry) function increments the value of the pointer ntry.
For example, x=nsucr(x), will increment the pointer x, so that x now points to
the next entry in a file. The nfind function can be used to determine the
rank of an entry in a file which contains a value for a specified attribute
that bears a relationship, designated by the user, to the value of a variable
specified in the nfind function.
For example,

nrank = nfind(6,3,4,0,10.0,0.0)

is saying, search file 3 beginning with the 6th entry to determine the rank of
the entry which has its 4th atrib exactly equal to 10, and place the rank in

the variable nrank. The nfind function is explained in great detail in chap-

ters 7 and 8 of [1].

2.2.4 Statistics Collection

To collect statistics based on an observation, the user must include a
STAT statement in the DRIVER. The statistic will be collected by calling the
SLAM subroutine COLCT.

STAT, ICLCT, ID,NCEL/HLOW/HWID;

[

ICLCT is an integer number that the user specifies as

-20-




the file
for storing the statistics
ID = user specified identification

NCEL/HLOW/HWID

histogram parameters (see COLCT NODE in section
2.1.1)

Call colct(xval,iclct)

xval = the variable for which the statistics are being
collected
iclct = as above

For example, the DRIVER file might look like,
GEN,ED FRIEDMAN,3/14/85,NO,NO;
LIMITS, 2,3,300;
STAT,1,NODE 1 SYS TIME;

FIN;

2.2.5 Example 2-2 File Manipulations
Suppose for some reason, packets are being placed into file 1 using the
filem subroutine.
call filem(1,atrib)
File the packet being processed into file 1.
And we want to remove a specific entry in file 1, using the nfind and the
rmove subroutines.,
rank = nfind(1,1,2,0,node,0.0)
call rmove(rank,1,atrib)
Set the variable rank equal to the rank of the first entry found ip
file 1 whose second attribute is exactly equal to the wvariable
node. And remove that entry in file 1 and place its attributes in
the attribute array.
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2.2.6 Example 2-3 File Manipulations Involving the Event Calendar
The SLAM variable NCLNR is equal to the file number of the event calen-
dar. Where, NCLNR=MFIL+1, recall MFIL from the LIMITS statement is the maxi-~
mum number of files used. Like entites, events contain an atrib array, and
the MATR+1, recall MATR from the LIMITS statement is the maximum number of
attributes used, attribute of an event contains the event code (recall the
event code of the sense event is 1 from above)., The MATR+2 attribute of an
event contains the event time, which was specified in the schdl subroutine.
For example,
Suppose in the LIMITS statement, MATR is set to 3 and
MFIL is set to 2. Then attribute 4 contains the event code, attribute 5
contains the event time, and the NCLNR variable is 3.
Suppose event 1 has been scheduled to occur 100 time units from the time when
the schdl subroutine was called,
call schdl(1,100,atrib).
And suppose that this time in the simulation has not been reached. Further,
suppose that for some reason, we do not want event 1 to be executed after
all. For example, a packet in a CSMA/CD network has experienced a collision
and we do not want the end of the transmission to be executed any more. So,
event 1 must be removed froﬁ the event calendar. But first we must find event
1 in the event calendar using the mmfe, and nscur functions.
next = mmfe(nclnr)
set the variable next to point to the first entry in the event
calendar

10 call copy(-next,nclnr,atrib)
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copy the attributes of the entry pointed. to by the pointer next
into the attribute array, the negative sign indicates that next
is a pointer
if (condition)
then this entry in the event calendar is the one we want to
remove
call rmove({-next,nclnr,atrib)
remove this entry from the event calendar
else the entry copied out of the event calendar was not the
particular event that we want to remove
next=nsucr(next)
increment next to point to the following entry in the event
calendar
go to 10
continue the process until we find the event to be removed
end if
In this section, the Discrete Event modeling approach has been de-
scribed. This approach allows the user to do many modeling techniques which
were not allowed in the Network Modeling approach. These modeling techniques
include file manipulations, an output report which is tailored to the modelers
needs, and the manipulation of +the event calendar. Although the Discrete
Event approach is very useful to communication network modeling, it does
become quite cumbersome for generating packets and simulating a simple

queue., Therefore, it is very desireable to combine the Network and Discrete

Event modeling approaches.
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2.3 Combined Network/Discrete Event Modeling

By combining the two modeling approaches, Network and Discrete Event, the
user can take advantage of both worlds. In combined modeling, it is advisable
to make use of the Network approach as much as possible due to its simplicity
and ease of model building. In the CSMA/CD simulation model, the Network
approach was not used extensively due to its lack of flexibility.

In the CSMA/CD simulation model, two additional topics from SLAM were
used that have not been covered yet. They are the EVENT block, which allows
the modeler to link the Network model to the Discrete Event model, and the
FREE subroutine. Like the FREE block in the Network approach, the FREE sub-
routine allows the modeler to free units of a resource. In this section,
these last two topics will be discussed.

The structure of the EVENT block is shown below,

EVENT, JEVNT, M;

where,

JEVNT ‘specifies the event code of the event that the entity is being

mapped into
M = the maximum number of emanating activities to be taken following
the processing of the EVENT block.
By placing the EVENT block in the Network model, the modeler can map packets
from the Network model into the Discrete Event model. The packets will be
mapped into the event specified by the event code of JEVNT. At the current
time in the simulation, TNOW, the event JEVNT will be executed for the packet
which has just entered the EVENT block.

By using the FREE subroutine, the modeler can free units of resource from
the Discrete Event model which will tell the AWAIT block in the Network model
tha£ the next entity or packet can begin the process. The structure of the
FREE subroutine is as follows,
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call free(ir,n)

where,
ir = resource number
n = number of units of resource ir to be released

In this chapter, a brief introduction to the simulation language SLAM has
been given. This introduction is intended as a primer for Chapter 3 where the
CSMA/CD simulation model, implemented at the Telecommunications and Informa-
tion Sciences Laboratory, is explained fully. The full description of SLAM
can be found in [1], in addition a set of notes which were prepared for a

seminar are also available to the interested reader [2].
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3.0 THE CSMA/CD SIMULATION MODEL

The Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
protocol that was proposed by Metcalf and Boggs [3], has become known as
Ethernet., The Ethernet has since evolved [4] and is described in the IEEE
Standard 802.3 [5]. The Ethernet was designed and implemented as a joint
effort by Digital Equipment Corporation, Intel Corporation, and the Xerox
Corporation. The Ethernet is a broadcast network with a long coaxial cable.
The cable is typically distributed through a building, and the terminals tap
onto the cable. In this study, the Ethernet standard need not be followed,
the main concern is to accurately simulate a general CSMA/CD protocol.

This chapter is divided into three sections. The first section gives an
introduction to the CSMA/CD protocol. The second section, which is the main
topic of this chapter, gives a complete description of the CSMA/CD simulation
model implemented at the University of Kansas Telecommunications and Informa-
tion Sciences Laboratory (TISL). The third section compares the simulation
model to the published performance results of the Ethernet.

The comparison will be made with the published results of Shoch [6, 7,
8]. The results published by Shoch were taken from an acutal Ethernet Local
Area Computer Network. In addition, a comparison will be made to the results
published by Hughes and Li [9]. The study done by Hughes and Li was a simula-
tion also, and allows a comparison of system delay. There was also a study
done by Acampora et.al. [10], which gives another comparison of delay. By
comparing the simulation results of the model implemented to the published
results, it is clear that the simulation accurately models CSMA/CD networks,

The main goal of this chapter is to introduce the reader to the CSMA/CD
Local Computer Network simulation model. Together with the introduction to

the simulation language SLAM, presented in Chapter 2, the reader should be
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well equipped to understand and/or modify the CSMA/CD simulation model. The
tool used to model the CSMA/CD protocol was described in Chapter 2, namely

SLAM, and in this chapter, the actual model will be described in detail.

3.1 Review of the CSMA/CD Protocol

The CSMA/CD protocol can be described as listen-before and listen-while
transmitting. That is, before beginning transmission a network node will
listen to the channel to see if any other nodes are transmitting. If another
node is transmitting, then the node will defer or wait until the channel is
idle. When the channel is sensed idle, the node will begin to transmit after
waiting the interframe spacing, which is typically 9.6 microseconds [5].
While transmitting, the node will monitor the channel to make sure the packet
or message is received without error.

When two or more nodes attempt to transmit their packets at the same time
errors occur. When this happens, it is said that a collision has occurred.
Clearly, there is a finite amount of time in which collisions can occur. This
amount of time is known as the collision discrimination period. The collision
discrimination period is the time period from the beginning of transmission to
the point in time where all other nodes will see the transmission and will
defer their transmission. The collision discrimination period is set in the
model and is one round-trip propagation, typically 5 to 10 microseconds. The
packet length should be greater than the time required to travel one round-
trip propagation. That is, the packet length should be greater than the
collision discrimination period.

If a collision does occur, the node will send a jam signal and calculate
a backoff time. This jam signal is used to inform all other transmitting

nodes that a collision has occurred and they should stop transmitting. When a
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jam signal is seen, the transmitting nodes will determine a backoff. The
backoff is a randomly chosen amount of time which is used to determine the
amount of time to be waited before attempting to transmit again. When a
collision is detected the node sends a jam signal, calculates a random wait
time or backoff, waits that backoff time, and begins the process again.

The backoff can be determined in any manner seen fit by the analyst. 1In
the CSMA/CD model described here, and in the Ethernet, a truncated binary
exponential backoff scheme is used. 1In this scheme, the backoff is determined
by first sampling a uniform distribution, and then taking that random sample
and multipling it by the slot time. The slot time is approximately the round-
trip propagation delay. The size of the uniform distribution is dynamic and
depends on the number of retransmission attempts., The lower bound of the
uniform distribution is zero, and the upper bound is equal to

2"
where n is the number of retransmission attempts. If n becomes larger than
some value, typically 10 [5], then the upper bound is truncated to

10_

2 1.

The decision logic for the CSMA/CD protocol can be seen by steping through the

flow diagram shown in Figure 3-1.

3.2 The TISL CSMA/CD Simulation Model

In this section the CSMA/CD simulation model developed at the University
of Kansas Telecommunications and Information Sciences Laboratory (TISL) will
be explained. The model was thoroughly validated and accurately simulates a
real system, section 3.3 will discuss the validation results. The model is
divided into two distinct parts. The first part is the Network Model, where

SLAM Network blocks are used to simulate the arrival of packets to the network
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and the build up of packets at the node queues. The second part is the Dis-
crete Event Model, where the CSMA/CD protocol and the propagation on the line
are simulated.

Section 3.2 is divided into six subsections. The first will describe the
variables and files used. The second will describe the Network Model., The
third will describe the Discrete Event Model. The fourth describes how the
simulation is initialized. The fifth describes the output. And the sixth
describes how the system configuration can be modified. All of the SLAM
variables, subroutines, and blocks used to model the CSMA/CD Local Area Net-

work were described in Chapter 2.

3.2.1 Vvariables and File Assignments
The variables used to model the CSMA/CD Network are divided into four
types. The first variable type used are the SLAM variables. The second are

model variables, the third are CSMA/CD variables, and the fourth are measure-

ment variables.,

3.2.1.1 SLAM Variables

The SLAM variables inc;ude the attributes, TNOW, NCLNR, and global vari-
ables., The TNOW variable is the current time in the simulation. The NCLNR
variable is the file number of the event calendar. The attributes are an
array of variables carried with the packet as it passes through each process
in the model. The attribute array of each packet is really a list of varia-
bles, each packet has the same definition of a particular attribute, while the
actual value for the attribute may be different. The definition of each
attribute is listed below.

Tatrib(1) = packet creation time
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atrib(2)

atrib(3)

atrib(4)

atrib(5)

atrib(6)

atrib(7)

atrib(8)

atrib(9)

atrib(10)

atrib(11)

atrib(12)

atrib(13)

atrib(14)

"atrib(15)

node identification

propagation left marker, if left prop is finished then
atrib(3) = 0

propagation right marker, if right prop is finished

then atrib(4) = 0

if atrib(5) = 0 then the event being scheduled is
propagation, if atrib(5) = 1 then the event being

scheduled is transmission

counter for the number of attempts to transmit

end of propagation left marker, if atrib{(7) = 0 then
finished prop left

end of propagation right marker, if atrib(8) = 0 then
finished prop right

packet length in microseconds

atrib(9)-slttim = amount of time left after the collision
discrimination period

number of bits per packet

marks the time transmission is attempted, gets reset each
time a rgtransmission is attempted

while packet is in the AWAIT block atrib(13) = 0, set to 1
when packet leaves the queue, used to collect statistics on
the amount of time a packet is queued, tqueud=atrib(14)-
atrib(1) if atrib(13) = 0

marks the time when a packet leaves the node queue (the
AWAIT), used to collect statistics on the time required to
access the network, taccss=atrib(12)-atrib(14)

not used
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atrib(16) not used

atrib(17) first access attribute, if the packet is trying to transmit
for the first time then atrib(17) is set to 1 from 0, on

subsequent attempts to transmit atrib(17) is incremented

3.2.1.2 Model Variables

The model variables are those which were created to simulate certain
aspects of the CSMA/CD protocol. The three most important model variables are
the node state array, the station delay array, and the network status array.
The node state array is dimensioned to the maximum number of stations
(maxsta). Each element in the node state array describes the state that a
particular node is in. For example, if element 5 of the node state array
contains the number 5, then the fifth node on the network is idle. There are
seven possible node states and they include all the possible states that a
node can be in. They are, defer, transmitting, collision discrimination
period, jamming, terminating, idle, and collision during interframe spacing.
The node state array and the possible states are listed below.

node states:

idefer = 0 = node is defering transmission
itrans = 1 = node is transmitting
icolpr = 2 = node is in the collision discrimination period
ijamng = 3 = node is jamming
iterm = 4 = node is terminating a packet
iidle = 5 = node is idle
intrmv = 6 = node has experienced a collision during the interframe
spacing
nodest(maxsta) = node state array, each element is set to one of the
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states above, and defines the state of a particular
node
maxsta = maximum number of nodes {(or stations) being simulated

The station delay array contains the spacing between nodes in time. The
station delay array is dimensioned to the maximum number of nodes minus one
(maxsta-1). Each element of the station delay array contains a spacing. For
example, element one contains the spacing between nodes 1 and 2, element two
contains the spacing between nodes 2 and 3, and element (maxsta-1) contains
the spacing between nodes (maxsta-1) and maxsta.

stadly(maxsta-1) = distance between nodes (in microseconds), e.q.,

stadly(1)=distance between nodes 1 and 2

The network status array gives an indication of the way a particular node
sees the channel. Like the node state array, each element in the network
status array corresponds to a particular node. The array is dimensioned to
the maximum number of stations. The network status array is used to sense the
channel. If an element in the array containska 0, then the node corresponding
to that element sees the channel as idle. If an element in the array contains
a 1, then the node corresponding to that element sees the channel as busy. If
an element in the array contains a 2 or greater than the node corresponding to
that element sees the channel as undergoing collisions. As will be discussed
later, when the packet is traveling down the line the element in the network
status array that corresponds to the node that the packet has entered will be
incremented. The network status array is outlined below.

ntstus(maxsta) = network status array, if O then channel is idle, if 1

then channel is busy, if greater than 1, then channel is

undergoing collisions
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3.2.1.3 CSMA/CD Variables

The third variable type are the CSMA/CD variables. These are variables
particular to the CSMA/CD protocol. These variables include the maximum
allowable number of collisions (mxcoll). If greater than mxcoll collisions
occur, the packet will be discarded by the simulation. 1In a real network, the
message being discarded will have to be retyped and sent again. The wait time
or interframe spacing (waitim) is an amount of time that a packet will wait
before beginning to transmit. When the channel is sensed idle, the protocol
says to wait a small amount of time, called the interframe spacing, before
beginning to transmit. The jam time is another CSMA/CD variable, it is the
amount of time required to transmit the jam signal. Recall that the jam
signal is sent when a collision occurs to inform all the transmitting nodes
that a collision has occurred, and the nodes must calculate and wait a backoff
time, The jam signal represents wasted time and should be made as small as
possible., The slot time is the fourth and final CSMA/CD variable. The slot
time is the collision discrimination period. That is, the slot time eqguals
the amount of time required for all other nodes to see that some other node is
transmitting. The CSMA/CD variables are outlined below.

mxcoll = the maximum number of collisions = 16

waitim interframe spacing = 9.6 microseconds

rjmtim

jam time

slttim = slot time = round trip propagation delay

3.2.1.4 Measurement Variables

The fourth and final variable type are the measurement variables. These
variables are used to measure statistical information on the network. Many of

the measurement variables are used to measure performance of the network, such
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as the throughput. In addition to these measurement variables, many of the
attributes are used to measure the performance of the network. The measure-

ment variables are self explanatory and have been outlined below.

icnt(maxsta) = number of packets successfully and unsuccessfully
transmitted from each node

icoll(maxsta) = counts the collisions experienced by each node

excoll(maxsta) = number of packets from each node that were discarded
due to excessive collisions

frstat(maxsta) = number of packets successful on the first attempt to
access the network

timegd(maxsta) = time spent sending packets successfully from each
station, timegd/(total time) = throughput

attempts(mxcoll) = counter array, used to keep track of the number of
packets successfully transmitted after 1 attempt,
after 2 attempts, ..., and after mxcoll attempts

bitsgd = number of bits successfully transmitted

bitsbd = number of unsuccessful bits

3.2.1.5 File Assignments

There are two types of files in the CSMA/CD simulation model. The first
type are the node queues. These are files which are used to store packets in
the station queue. The node qgueues are really AWAIT blocks and will be de-
scribed in the next section. Each node on the network has a station queue or
AWAIT file associated with it, where packets will wait until the previous
packet has finished <transmission. The second file type are the statistics
collection files. These files store the statistical information being collec-

ted. The analyst can specify anything of interest to be collected as a sta-
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tistic, and SLAM will print out the information in the SLAM Summary Report.

The file assignments have been listed below.

Files 1-15 Reserved for the AWAIT blocks at each station
Files 16-21 Not used

File 22 Channel QUEUE block

File 23 Not Used

File 24 Defer file

File 25 Event Calendar

In addition to the file types mentioned above, there are two other files
that have been used. They are the event calendar and the defer file, The
event calendar has been discussed in Chapter 2 and is numbered NCLNR. The
defer file stores packets that are deferring from a busy channel. When the
channel is sensed busy or undergoing collisions, the packet will be stored in

the defer file, the defer file is numbered (NCLNR-1)}.

3.2.2 The CSMA/CD Simulation Model -~ Network Model

The CSMA/CD simulation model is divided into two parts. The first part
is the Network Model and the second part is the Discrete Event Model. The
Discrete Event Model will bg discussed in section 3.2.3, and the Network Model
will be discussed here. A reduced version of the Network Model is shown in
Figure 3-2, and the complete listing is in Appendix A.1. The Network Model is
explained in this section by stepping through the code listed in Figure 3-2.

In the Network Model, the arrival of packets to the network and the
build-up of packets at the network stations is simulated. The simulation of
packets arriving to the network is done using the SLAM CREATE block, lines 20,
27, and 37. Recall from section 2.1 that the CREATE block generates entities

at a user specified rate. The entities in the case of the CSMA/CD model are
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GEN, TISL, CSMA CD, B/20/84, L, NG, NO;
LIMITS, 24,17, 200;

STAT,

1,NODE {1 SYS. TIME

STAT, 2, NODE 2 SYS. TIME

STAT,
STAT,
STAT,
STAT,
STAT,

15, NODE 15 SYS TIME
14, QUCZUEING DELAY
17, ACCESS DELAY

18, CHANNEL DELAY
19, TOTAL SYS DELAY

NETWORK;

RESOURCE/PACK1, 1 /PACK2, 2/PACK3, 3/PACKA4A, 4/PACKS, S/PACKE, 6/
PACK7, 7/PACK8, 8/PACK?, 2/PACK10, 10/PACKI11, 11/
PACK12, 12/PACK13, 13/PACK14, 14/PACKLD, 15;

CREATE, EXPON(13931. 97265625),, Licreate packets at naode |
ASSIGN, ATRIB(2)=1. 0,
ATRIB(9)=1393. 197265625,

ATRIB(11)=4096. O, 1 assign attributes
AWAIT(1), PACKL; packets wait for previous packet to
ACT, , . CHNL; finish immediate branch to the channel

CREATE, EXPON(13931. 97265625), 1500, 1;
ASSIGN, ATRIB(2)=2. 0,
ATRIB(9)=1393. 1972565625,
ATRIB(11)=4096. 0, 1;
AWAIT(2), PACKZ;
ACT, s, CHNL;

CREATE, EXPON(13931. 9724656&5), 272000, 1;
ASSIGN, ATRIB(2)=15. 0,
ATRIB(9)=1393. 1972654625,
ATRIB(11)=4094. 0, 1;
AWAIT(15), PACKLS;
ACT, ,,» CHNL;

COMBINE STATIONS TO FORM CHANNEL

QUEUE(22); DUMP ENTITIES INTO QUEUE

ACT; IMMEDIATE BRANCH TO CHANNEL MODEL
EVENT, 1; GATEWAY TO DISCRETE EVENT MODEL
ASSIGN, XX (25)=10000000; SET XX(25) TO TTFIN

END;

INIT, O, 10000000;

F IN;

Figure 3-2. Shortened Version of Network Model.
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packets. The rate at which packets are created is specified as a percentage
of the load on the network. The nodes are generating packets with a Poisson
arrival rate, which implies an exponential interarrival time, That is, if we
assume that the system has a large number of independent packets which arrive
to the system and pass through the process, then we can assume an exponential
interarrival probability [11]. An exponential interarrival means that the
time between the arrival of packets is distributed exponentially, and has a

probability density described by equation (3-1).

a(t) = h e Mt t>0 (3-1)
=0 t< O
where,
a(t) = interarrival time probability density function
1/h = mean interarrival time
t = interarrival time

If the interarrival time is exponential, then the arrivals are Poisson. That
is, the probability of exactly n packets arriving during an interval of length

t is given by the Poisson law, equation (3-2) [11].

P_(t) = [(ht)" /nr1e™™* (3-2)
where,
h = mean arrival rate.

The mean interarrival time is calculated as a function of the percentage
of the load, the packet length, the total line capacity, and the number of
nodes., In equation (3-3), the mean interarrival is given as a function of
these parameters.

u = (NP)/{LC) seconds per packet (3-3)

where,

u = the mean interarrival time
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N = number of nodes whose combined load on the network simulates L
percentage of the total capacity C

P = the packet length in bits per packet

L = offered load, percentage of the total capacity that is to be
simulated in decimal

C = the total capacity of the line in bits per second.

The discussion above shows that the simulation of packets arriving to the
network nodes is done using the SLAM CREATE block, and the formula used to
calculate the mean packet interarrival time is given. After being generated,
the packets pass through an ASSIGN block, lines 21-23, 28-30, and 38-40. 1In
the ASSIGN block, the second, ninth, and eleventh attributes are set. Recall
from above that the second attribute, atrib(2), gives the node identifica-
tion. So, the first node on the network will have atrib(2) set equal to 1,
the second node will have atrib(2) set equal to 2, and the maxsta node on the
network will have atrib(2) set equal to maxsta.

The ninth attribute, atrib(9), sets the packet length in microseconds.
To convert the packet length from bits per packet to seconds per packet,
divide the packet length in bits by the total line capacity. Atrib(9) can be
set to the same value for each node if the system being modeled has a constant
packet 1length, or to different values if individual nodes generate packets
with different lengths. The analyst can study a system in which packet
lengths vary randomly by setting atrib(9) to a random distribution. The
eleventh attribute, atrib(11), is the packet 1length in bits and the same
comments made concerning atrib(9) apply to atrib(it).

After the packet is generated using the CREATE block and gets its attri-
butes set in the ASSIGN block, the packet enters an AWAIT block, lines 24, 31,

and '41. The AWAIT block represents a station queue. Packets will wait in
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this block until the previous packet has finished its transmission or is
discarded. Recall from section 2.1 that the entities or packets will wait in
an AWAIT block until a unit of resource is freed. Every node being simulated
must have a resource associated with it. When the packet leaves the AWAIT
node, it carries its resource and will release the resource when terminated.
The resources are defined using the RESOURCE statement on lines 13-15, the
resources are named according to the node they belong to. For example, the
resource associated with node 1 is PACK1, the resource associated with node 2
is PACK2, and so on.

When the previous packet finishes its transmission, the resource is
released and the next packet leaves the AWAIT block, and enters an ACTIVITY
block, line 25, 32, and 42. 1If there are no packets in the AWAIT block, the
resource will remain at the AWAIT block until a packet arrives. When a packet
arrives, it will seize the resource and proceed to the ACTIVITY block. In the
ACTIVITY block, the packet is branched out of the Network Model and immedi-
ately enters the Discrete Event Model or Channel Model. Before branching into
the Discrete Event Model, the packets are sent to the channel queue, labeled
CHNL, 1line 47. The channel queue is used to avoid sending two packets into
the EVENT block at the same time. This queue will not have any packets wait-
ing in it since the following block is an ACTIVITY which has a zero service
time, line 48. After exiting the ACTIVITY block at line 48, the packets enter
the EVENT block, line 49, which branches them into the first event in the
Discrete Event Model. The first event is SENSE, so the packet will immedi-
ately sense the channel upon leaving the Network Model. The Discrete Event
Model will be discussed in section 3.2.3.

The discussion above shows how packets are generated and follows the flow

through the Network Model. The other SLAM statements and blocks were discus-
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sed in Chapter 2 and will briefly be discussed here. The first two statements
are the GEN and LIMITS statements, lines 1 and 2. Recall that the GEN state-
ment gives general information about the simulation such as the analyst's name
and the date. The LIMITS statement is used to specify the number of files,
attributes, and the maximum number of concurrent entries in all the files.
These values are specified as 24, 17, and 200 respectively,

Following the LIMITS statement is a group of STAT statements, lines 3-11,
which are used to specify the statistical information that is to be printed in
the SLAM Summary Report. The first 15 STAT statements (3 through 14 are not
shown) define the STAT files 1-15 to be used for collecting statistics on the
total system delay for each node, individually. The next four STAT statements
define the STAT files 16-19 which are also delay. However, they are the
delays combined for all the nodes. They are the queueing delay, the access
delay, and channel delay, and the total system delay. The queueing delay is
the time that packets spend in their node queues, the AWAIT block. The access
delay is the time spent trying to send the packet successfully, it begins when
the packet leaves the node queue and ends when the node begins to send the
packet and the packet is successful. The channel delay is the time required
to send the packet over the channel, and 1is equal to the packet 1length in
seconds. The total system delay is the time a packet is in the system. It
begins when the packet is created and ends when the packet has either finished
transmission or is declared unsuccessful. The total system delay is also the
combination of the other three.

TOTAL SYS = QUEUEING + ACCESS + CHANNEL
The next statement, after the STAT statements, is the NETWORK block, line
12. The NETWORK block tells SLAM that all the code that follows will be SLAM

network blocks. The RESOURCE block is the next statement, lines 13-15, and
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was discussed above. The other code has already been explained, the groups of
code, lines 20-25, and lines 27-32, and lines 37-42, simulate the nodes on the
line. Again, lines 47-49, accomplish the branching of packets into the Dis-
crete Event Model. On line 50, there is an ASSIGN block, this is used to set
the global variable XX(25) to the end of simulation time (TTFIN). The follow-
ing block is the END block, which tells SLAM that there will not be any more
Network blocks.

The last two lines are the INIT and FIN statements, respectively. The
INIT statement specifies the amount of time that is to be simulated. 1In this
example, the simulation is running from time 2zero to ten seconds. The units
of time are microseconds, so the value 10,000,000 for the end of the simula-
tion is only ten seconds of real time. The FIN statement is the last line of
code, the FIN statement denotes the end of all SLAM input statements.

In this section, it was shown how the mean value for the interarrival
time of packets is calculated. The SLAM code used to simulate the arrival of
packets to the network and the build-up of packets at the nodes, has been
discussed. The simulation of network nodes was described. And the flow of
packets through the Network Model and into the EVENT block which branches the
packets into the Discrete- Event Model has been presented. In the Network
Model, the simulation of packets arriving to the network and the build-up of
packets at the nodes can be done. The rest of the CSMA/CD protocol discussed
in section 3.1 must be simulated using the Discrete Event Modeling techniques
discribed in Chapter 2. In the following section, the Discrete Event Model

used to simulate the CSMA/DC protocol, is discussed.
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3.2.3 The CSMA/CD Simulation Model - Discrete Event Model

The Discrete Event portion of the CSMA/CD simulation model will be dis-
cussed in this section. Part of this model has already been discussed when
the variables were explained. The node state, station delay, and network
status arrays make up an important concept in the Discrete Event Model. The
other major portion of the model is simulating the propagation down the line.

In the Network Model, we saw 1) how the simulation of packets arriving
to the network is done; 2) that the packets will wait at the nodes until the
previous packet has finished transmission; and 3) how the packets are branch-
ed into the Discrete Event Model., To simulate the rest of the CSMA/CD proto-
col, outlined in Figure 3-1, the Discrete Event approach to simulation that
was described in Chapter 2 must be used. The network elements that are left
to simulate are sensing the channel, checking for collisions, handling the
backoff, and propagation on the line. The propagation presents some of the
more challenging problems. If the node that originated the packet is some-
where in the middle of the line, the packet must propagate in both directions
until it encounters the end of the line. 1If the packet originates at one of
the ends of the line, propagation is in just one direction.

The node state array -has an element for each of the nodes on the net-
work, For example, element 1 is a storage location which holds the state that
node 1 is currently in, and element 2 holds the state that node 2 is currently
in, and so on. The node state array is used to describe where a particular
node is in the protocol of Figure 3-1. There are seven possible states that a
node can be in. The node can be defering transmission. If the node senses
the channel as busy, the packet will be placed into the defer file which is
numbered (NCLNR-1), and the node will be in the defer state. The node could

be in the transmit state, which would indicate that the node has sensed the
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channel idle and has begun to transmit the packet. The node may be in the
collision discrimination state, which would mean that the packet is being
transmitted but all the nodes on the line have not seen the leading edge of
the packet arrive to their location so collisions could still occur. If the
node is in the jamming state then that particular node has had a collision
occur and is sending a jam signal. When a node is in the terminate state, its
packet has finished transmission, and if a packet is waiting in the node queue
it can now be released. When a node does not have any packets in the network,
it is placed in the idle state. If a node senses the channel idle, it will
begin to transmit its packet after waiting the interframe spacing, but the
leading edge of a packet from another node may arrive to the node during this
time. If this occurs, a collision will be declared and the node will be
placed in a state to indicate this,

The network status array also has an element for each node in the net-
work, The elements give an indication of how a particular node sees the
channel. The channel may be idle, busy, or undergoing collisions. In the
network status array element 1 contains node 1's view of the channel, and
element 2 contains node 2's view of the channel, and so on. If an element in
the network status array contains a 0 then the particular node that sees the
channel as represented by that element will see the channel as idle. Simi-
larly, if the element contains a 1 then the node sees the channel as busy, and
if the element contains a 2 or greater then the node sees the channel as
undergoing collisions.

The third array is the station delay array. It contains the spacing
between nodes. The spacing has been converted into units of time. The time
units in the CSMS/CD simulation model are microseconds. So, if a 635 meter

line is being simulated, this distance must be converted into microseconds.
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This requires that the velocity of propagation in the coaxial cable be
known. The velocity will depend on the cable being used. For the Ethernet a
minimum velocity of propagation is specified as 0.77c¢ [5]. Which is approxi-
mately 2.31 x 108. A 635 meter line would be converted to a 2.75 microsecond
line. The nodes will be spaced accordingly on the 2.75 microsecond line. The
nodes can be equally spaced or irregularly spaced depending on the particular
network to be studied. Each element of the station delay array contains the
spacing between the nodes. For example, element 1 contains the spacing be-
tween nodes 1 and 2, and element 2 contains the spacing between nodes 2 and 3,
and so on.

These three arrays make up the essense of the Discrete Event portion of
the CSMA/CD model. The model consists of eight events. The events are either
performing a certain portion of the protocol or handling the propagation on
the line. 1In addition to the eight events, there are five subroutines. These
subroutines are used to handle the collisions, remove packets from the defer
file, and free a unit of resource when the packet has either finished its
transmission or is declared unsuccessful. The event codes, event names, what
events are scheduled from a particular event, and what subroutines are called
by a particular event are 1listed in Table 3-1. The subroutine names, what
events are scheduled from the subroutine, and what subroutines are called from
the subroutine are listed in Table 3-2.

In this section, each of the events and subroutines will be described.
The actual code developed will not be stepped through due to its length. The
code will be described using flow diagrams of each event and subroutine. The
actual code is listed in Appendix A.2. The code itself is fully commented and

the interested reader should not have any trouble understanding it, so long as

the reader has a basic knowledge of the computer programming language FORTRAN
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77. The events and subroutines will be described in the order they appear in
Tables 3-1 and 3-2. In the code, the events are written as FORTRAN sub-

routines. However, they represent events to SLAM.

Event Code Identification Schedules To Subroutines Called
1 sense transmit
2 transmit leftprop collision
rigtprop chnlecho
success
3 leftprop leftprop collision
chnlecho
4 rigtprop rigtprop collision
chnlecho
5 success endtrans
6 endtrans ltfinprop freersc
rtfinprop chnlecho
7 ltfinprop ltfinprop exitdefer
chnlecho
8 rtfinprop rtfinprop exitdefer
chnlecho

Table 3-1. The events used to simulate the CSMA/CE Local
Computer Network

User Written Subroutine Schedule To Calls To

collision endtrans search
calc wait backoff

search

calc wait backoff sense
exitdefer sense
freercs

chnlecho

Table 3-2. The subroutines used to simulate the CSMA/CD
Local Computer Network
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The first subroutine to describe is the event subroutine. Recall that all
Discrete Event models must have an event subroutine. BAn event will be sche-
duled to occur at some time in the future using the schdl subroutine provided
by SLAM. Actually, the schdl subroutine places events on the event calendar,
and at the proper time in the simulation, the event is pulled off the calen-
dar, and the event subroutine does a FORTRAN call to the particular event
which has been scheduled to occur. The event subroutine is merely used to
call the proper event when the correct time in the simulation has been rea-
ched. The event subroutine does not model any portion of the protocol, it is
merely a formality which must be taken care of in the simulation,

In the flow diagrams, there are some symbols and general techniques that
will be described here. When an attribute is being changed or modified, the
letter "a" will be used as an abbreviation of atrib. For example, attribute
17 would appear as atrib(17) in the code of Appendix A.2, and would appear as
a{17) in the flow diagrams. As with standard flow diagrams, the diamond
indicates a decision. The boxes may be comments or perform a specific func-
tion. Since the emphasis here is on the simulation of the network, all of the
statistics collection operations have been omitted from the flow diagrams. 1In
all of the events, the first thing that is done is to set the identification
or ID, inode is set equal to the second attribute. This is done so that the

node can be referenced using a variable that describes the node instead of

using atrib(2).

3.2.3.1 Description of Events
In this section, the events created to model the CSMA/CD network will be

described. Each of the eight events listed in Table 3-1 will be described
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using flow diagrams. The first event that a packet must execute when it
leaves the Network Model is the SENSE event (event code = 1).

In the SENSE event, like all the other events and subroutines, the first
thing done is setting inode equal to the 1ID, atrib(2). Then the 10th attri-
bute is set to the amount of time needed to transmit the packet after the
collision discrimination period has expired. Once the collision discrimina-
tion period is over the packet being transmitted controls the channel and can
finish the transmission successfully. The next operation performed in SENSE
is to see if the channel is idle or busy. This is done by observing the value
of the network status array element used by the ID node, ntstus(id). If
ntstus(id) is 2zero, then the channel is idle, if not, then the channel is
busy.

As seen in the flow diagram of Figure 3-3, there 1is a separate set of
operations that must be performed depending on whether or not the channel is
idle. If the channel is idle, the packet will begin transmission. If the
channel is busy, the packet must be stored in the defer file. Whether or not
the channel is idle, the fifth attribute is set to 1. This is done to indi-
cate a transmission event. It will be seen later that it must be known whe-
ther an event scheduled is .a propagation or a transmission. If the event is
propagation, then atrib(5) is set to 0, otherwise it is set to 1. The reason
this must be done is that for a certain set of circumstances an event will be
removed from the event calendar but propagation events will never be re-
moved. So to be sure that a propagation event is not removed the fifth attri-
bute is used to signify propagation.

If the channel is idle, ntstus(id) = 0, then the node state must be set
to transmitting, and the TRANSMIT event is scheduled to be executed after

waiting the interframe spacing. If the channel is not idle, then the node
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SENSE entered from:
Network Model

scheduled from:
set ID EXITDEFER
inode=a(2) CALC_WAIT_BACKOFF

calculate the time left after the
collision discrimination period
a(10)=a(9)-slttim

channel Y N channel
is idle t is busy
transmission event transmission event
a(5)=1 a(5)=1
set node state to set node state to
transmitting defering
nodest(id)=itrans nodest(id)=idefer
\i/ N
schedule the transmission file the packet in the
to begin after waiting defer file, the packet will
the interframe spacing return when the channel
call schdl(2,waitim,atrib) becomes idle
call filem({nclnr-1),atrib)

N

return . return

Figure 3-3. Flow diagram of the SENSE event.
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must be placed in the defer state, and the packet is filed into the defer file
using the SLAM subroutine filem. The defer file is numbered (NCLNR-1), where
NCLNR is the file number of the event calendar.

If the channel is sensed idle, then the packet waits the interframe
spacing and begins to transmit the packet by scheduling the TRANSMIT event
(event code = 2). The first thing done in TRANSMIT is to increment the value
of the network status array at the ID node. This changes the ID node's view
of the channel from idle to busy. 1In the TRANSMIT event, the propagation to
the nearest node to the left and right are done if the node is not at either
end of the line. This is done by checking the ID, if the ID is 1 or maxsta
then the node is at the beginning or end of the line, respectively, and if the
ID is not 1 or maxsta then the node is somewhere between the two ends and the
packet must be propagated in both directions. If the ID node is at the begin-
ning of the line the propagate left marker, atrib(3), is set to zero to indi-
cate that no propagations to the left are necessary. If the ID node is not at
the beginning of the line, then the left propagation marker is set one node to
the left of the ID node, (ID-1), and atrib(5) is set to zero to indicate a
propagation event. Then the LEFTPROP event (event code = 3) is scheduled to
be executed once the leading edge of the packet arrives to the (ID-1) node.
The time to propagate to the (ID-1) node is stored in the station delay array
in the (ID-1) element, stadly(ID-1).

If the ID node is at the end of the line, ID=maxsta, then no propagation
to the right is necessary and the right propagation marker must be set to
zero. If ID is not equal to maxsta then a propagation event must be declared,
atrib(5)=0, and the RIGTPROP event (event code = 4) must be executed when the

leading edge of the packet arrives to the (ID+1) node.
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It is clear from Figure 3-4 what is happending in the TRANSMIT event,
Figure 3-4 shows that in the TRANSMIT event, there is a check to see if a
collision had occured as soon as the packet began to transmit, This can
happen if the leading edge of a packet arrives to the ID node while the ID
node is waiting the interframe spacing. When this occurs, it is said that a
collision occured during the interframe spacing and the node state is set to
intmrv, which indicates this. If the network status of ID is greater than or
equal to two then a packet did arrive to ID during the interframe spacing and
the collision subroutine is called.

The final operation performed in TRANSMIT is to schedule the SUCCESS
event to be executed after the collision discrimination period has elapsed.
Once the collision discrimination period is over the packet controls the
network. If the node state does not equal itrans then the ID node will not
schedule the SUCCESS event. All the packets are in the itrans state when they
enter the TRANSMIT event., It is possible that the node state gets changed to
intmrv as described above. As packets leave the TRANSMIT event they are usu-
ally in the icolpr state. This indicates that the packet being transmitted is
currently in the collision discrimination period.

It has been shown that the TRANSMIT event causes the leading edge of the
packet to arrive to the nodes just to the left and right of the ID node. That
is, the leading edge of the packet is scheduled to arrive to the nearest nodes
by scheduling the LEFTPROP and RIGTPROP events to be executed when the leading
edge of the packet arrives to the next node. In addition, the TRANSMIT event
handles the situation when a packet arrives to a node while the node is wait-
ing the interframe spacing, and the SUCCESS event (event code = 5) is sche-

duled to be executed after the collision discrimination period has elapsed.
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figure 3-4. Flow dlagram of the TRANSMIT event.
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In the LEFTPROP event a new variable is created that is used to point to
the position to the left of the originating node that the leading edge of the
packet has arrived to. The new variable is called poslft, The position left
variable is immediately set to the left propagation marker, poslft=atrib(3).
The network status is incremented for the poslft node, this causes the poslft
node to see the channel as busy, if it was idle before, Next, there is a
check to see if incrementing the network status of the poslft node caused it
to be greater than or equal to two. If it is and the node state of the poslft
node is icolpr, then a collision has occured at the poslft node. If the
poslft node was not in the icolpr state, then that node was not transmitting
and it does not care that the network status indicates that the channel is
undergoing collisions.

If a collision did occur at the poslft node, the collision subroutine
must be called, but first the second attribute of the packet must be saved and
then set to poslft. This way, the collision subroutine is called for the
poslft node, not the node that originated the packet. After calling the
collision subroutine, the second attribute is set back to the node that origi-
nated the packet.

It is clear from the . flow diagram of Figure 3-5 that whether or not a
collision occurs at the poslft node there are several other operations perfor-
med in the LEFTPROP event. After checking for a collision the left propaga-
tion marker is moved one node to the left and poslft is set to the left propa-
gation marker. Then there is a check to see if the new poslft is the first
node on the line. 1If it is, then poslft equals zero and the left propagation
marker is set to zero.

If the packet has not propagated all the way down the line to the left

then poslft does not equal zero and the leading edge of the packet must be
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Figure 3-5.
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Flow diagram of the LEFTPROP event.
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scheduled to arrive to the next node to the left. This is done by first
setting the fifth attribute to indicate a propagation event, and scheduling
the leading edge of the packet to arrive to the next node in the amount of
time specified in the station delay array. The LEFTPROP event is being sche-
duled to be executed in the amount of time required to travel to the next node
to the left,

The RIGTPROP event is similar to the LEFTPROP event in that the same
operations are performed. In any case, the RIGTPROP event, outlined in the
flow diagram of Figure 3-6, will be described here. From Figure 3-6, it is
clear that the operations performed to simulate the propagation to the right
of the originating node are similar to those done to simulate the propagation
to the left. The first thing done is to set the variable posrgt to point to
the node that the leading edge of the packet has advanced to. This is done by
setting posrgt to the right propagation marker, atrib(4). Then the network
status of the posrgt node is incremented. If the posrgt node saw the channel
as idle it now sees the channel as busy, and if the posrgt node saw the chan-
nel as busy it now sees the channel as undergoing collisions. If the node was
not transmitting it will not act on the fact that the channel is undergoing
collisions. However, if the node was transmitting (in the collision discrimi-
nation node state) then the node would act on the channel condition. This is
what is checked for in the decision block that follows the increase in network
status. If the network status is equal to two and the node is in the icolpr
state, then the node has seen a collision and must call the collision subrou-
tine. If the node was not transmitting and once the collision has been taken
care of, the execution proceeds to move the right propagation marker one node

to the right.
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Flow diagram of the RIGTPROP event.
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It is important to note that when a collision does occur the propagation
continues. When a collision occurs the node must stop transmitting, send a
jam signal, determine the backoff, wait the backoff, and begin transmitting
again by sensing the channel. However, the partial packet that was transmit-
ted before the collision must still propagate to both ends of the line,

To continue with RIGTPROP, after moving the right propagation marker,
there is a check to see if the packet has traveled to the end of the line.
So, if posrgt is the maxsta node then the leading edge of the packet was just
propagated to the last node on the network, and the propagation right marker
is set to zero. If posrgt is not equal to maxsta, then the leading edge of
the packet must be propagated one node to the right. This is done by first
setting atrib(5) to indicate a propagation event and then scheduling the
RIGTPROP event to be executed when the packet arrives to the next node to the
right. So, the RIGTPROP event, like the LEFTPROP event, is continually execu-
ted until the leading edge of the packet has traveled all the way to the end
of the line,

Recall that in the TRANSMIT event, the SUCCESS event was scheduled to be
executed when the collision discrimination period has elapsed. The SUCCESS
event will be executed as long as a collision has not occured. This event is
relatively simple, see Figure 3-7. If the SUCCESS event is executed, then the
packet has successfully transmitted through the collision discrimination
period. The packet can now be transmitted down the line with all the nodes
seeing the channel as busy. So, in this event the node state is set to termi-
nate the packet and the ending edge of the packet must be propagated to all
the nodes. Recall that the end of the packet was calculated and is in the
10th attribute. So, the ENDTRANS event (event code = 6) is scheduled to be

executed after atrib(10) microseconds have elapsed.
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Figure 3-7.
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Flow diagram for the SUCCESS event.
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In the ENDTRANS event the initial propagations of the ending edge of the
packet are scheduled to arrive to the next nodes to the left and right of the
originating node if the originating node was not at one of the ends of the
line., The first thing done is to decrement the network status of the origina-
ting node, the ID node. Next, there is a check to see if the ID node is the
first node on the line. If it is the end propagation left marker, atrib(7),
is set to zero. If the ID node is not the first node on the line the end
propagation left marker is set to the next node to the left, and atrib(7) is
set to (ID-1). Then atrib(5) is set to 2zero to indicate a propagation
event. Then the LTFINPROP event (event code = 7) is scheduled to be executed
when the ending edge of the packet arrives to the (ID-1) node. Whether or not
the ID node is at the beginning of the line there is a check to see if the ID
node is at the end of the line, see Figure 3-8.

If the ID node is the last node on the network the ID is equal to
maxsta. If ID is equal to maxsta the ID node is the last node on the line and
the end propagation right marker, strib(8), is set to =zero. If ID is not
equal to maxsta the ending edge of the packet must be propagated one node to
the right. This is done by first setting the right propagation marker‘'to the
next node to the right, atrib(8) is set to (ID+1l). Then the fifth attribute
is set to zero to indicate a propagation event., And finally, the RTFINPROP
event (event code = 8) is scheduled to be executed when the ending edge of the
packet arrives to the (ID+1) node.

The next operation performed in ENDTRANS is to see if the ID node is in
the terminate state. If the ID node is in the terminate state the FREERSC
subroutine is called. Then there is a check to see if the ID node is in the
defer state, If it is the ID node has a packet ready to begin the process,

but nothing is done about it at this point. Then there is a check to see if
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the node state of the ID node is in the jamming state. If the ID node is in
the jamming state the node state is set to idle, and the ENDTRANS event is
over,

So, in the ENDTRANS event the simulation of the ending edge of the packet
leaving the originating node and the scheduling of it to arrive to the next
nodes is done. In the LTFINPROP and RTFINPROP events, the ending edge of the
packet is propagated all the way to both ends of the line, The LTFINPROP
event is shown in the flow diagram of Figure 3-9.

In LTFINPROP the position left variable, poslft, is set to the end propa-
gation left marker, atrib(7). Then the network status of the poslft node is
decremented. Then there is a check to see if the network status of the poslft
node is zero and the poslft node is in the deferring state. If both condi-
tions are true, the poslft node has a packet in the defer file, which must be
removed and begin the process. So there is a call to the EXITDEFER subroutine
which will remove the poslft node's packet from the defer file.

The LTFINPROP event continues by moving the end propagation left marker
one node to the left and sets poslft to the end propagation left marker. Then
there is a check to see if poslft is the first node on the line. 1If it is the
ending edge of the packet has propagated all the way to the beginning of the
line. However, if the poslft node is not the first node on the line a propa-
gation event must be declared and the ending edge of the packet must be sche-
duled to arrive to the next node to the left, the poslft node. This is done
by scheduling the LTFINPROP event to be executed in the amount of time speci-
fied in the station delay array. The execution of LTFINPROP will continue
until the ending edge of the packet has traveled all the way to the beginning

of the line.
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Figure 3-9. Flow diagram of the LTFINPROP event.
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The RTFINPROP event is similar to the LTFINPROP event in that the same
kinds of operations must be performed when propagating the ending edge of the
packet to either end of the line. The RTFINPROP event is shown in the flow
diagram of Figure 3-10, which clearly shows the similarity to the LTFINPROP
event. The first operation done is to set the position right wvariable,
posrgt, to the end right propagation marker, atrib(8). Then the network
status of the posrgt node is decremented, and then a check is made to see if
the posrgt node has a packet in the defer file and the channel is idle. 1If
this condition is true the packet is removed by calling the EXITDEFER subrou-
tine., ©Next, the end right propagation marker is increased by one to point to
the next node to be propagated to. A check is made to see if the posrgt node
is the maxsta node, if it is the packet has traveled to the end of the line
and the end right propagation marker is set to zero., If posrgt is not the
maxsta node a propagation event is declared and the RTFINPROP event is sche-
duled to be executed in the proper amount of time specified in the station
delay array. So, like LTFINPROP, the RTFINPROP event will be executed until
the ending edge of the packet has traveled all the way to the end of the line.

This completes the discussion of the events used to simulate the CSMA/CD
Local Computer Network. In the following section the subroutines, which are

listed in Table 3-2, will be described.

3.2.3.2 Description of Subroutines

The subroutines used to simulate the CSMA/CD network will be described
here, they include COLLISION, SEARCH, CALC__WAIT_BACKOFF, EXITDEFER, FREERSC,
and CHNLECHO. The first three, COLLISION, SEARCH, and CALC WAIT BACKOFF, are
similar in that they are all executed if a collision occurs. The COLLISION

subroutine calls the other two,
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Figure 3-10. Flow diagram of the RTFINPROP event.
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The COLLISION subroutine is called from either the TRANSMIT event, the
LEFTPROP event, or the RIGTPROP event. If one of the propagation events calls
COLLISION the propagation markers must be saved, this is the first thing done
in the COLLISION subroutine, as can be seen in Figure 3-11. The next opera-
tion done is to see if the node state is intrmv. If the node state is intrmv,
a packet arrived to the transmitting node when the node was waiting the inter-
frame spacing and the SEARCH subroutine will not be called. However, if the
node state is not intrmv the SEARCH subroutine is called so that the SUCCESS
event that was scheduled is removed from the event calendar.

Then the propagation markers are returned, and the sixth attribute is
incremented. Recall that the sixth attribute is a counter that keeps track of
the number of retransmissions made by the particular packet., Next, the end of
the jam signal is scheduled, and the CALC WAIT BACKOFF subroutine is called.

The SEARCH subroutine is used to find the SUCCESS event that was sche-
duled in the TRANSMIT event and remove it from the event calendar. Recall
that SUCCESS is executed when a packet successfully transmits through the
collision discrimination period. But when a collision occurs the packet did
not successfully make it through the collision discrimination period,’ so the
SUCCESS event should not be executed and it must be removed from the event
calendar.

The SEARCH subroutine uses many of the SLAM functions and subroutines
described in Chapter 2. The first thing done is to set the pointer "next" to
point at the first entry in the event calendar, file NCLNR. This is done
using the MMFE function. Then the entry pointed to by "next" is copied into
the attribute buffer, and a check is made to see if this entry has its second
attribute equal to ID and its fifth attribute equal to one. If this is true

then this entry is the SUCCESS event that was due to occur and must be re-
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Figure 3-11. Flow diagram of the COLLISION subroutine.
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moved. The event will be removed using the RMOVE subroutine. If the condi-
tion is not met the pointer "next" must be incremented using the NSUCR func-
tion and execution returns to copy this event into the attribute buffer, see
Figure 3-12. The operations are continued until the correct event is removed
from the event calendar.

In the CALC_WAIT BACKOFF subroutine there is a check to see if too many
collisions have occured. 1If there have been too many then atrib(6) is equal
to mxcoll, (typically 16 [5]) and the packet must be terﬁinated. If atrib(6)
is not equal to mxcoll execution continues by checking to see if atrib(é6) is
greater than or equal to 8. 1If atrib(é6) is greater than or equal to 8 then
there have been 8 or more retransmission attempts and the upper limit of the
uniform distribution will be truncated. If atrib(6) is less than 8, the upper
limit is calculated as shown in Figure 3-13. Once the upper limit of the
uniform distribution has been determined a sample from the uniform distribu-
tion will be taken. This sample is then converted to an integer and multi-
plied by the slot time. This final number is the amount of time that will be
waited before sensing the channel again. The last thing done is to schedule a
sensing of the channel in the amount of time specified by the backoff.

From the above it was shown that the three subroutines, COLLISION,
SEARCH, and CALC WAIT BACKOFF are all executed when a collision occurs. They
make up the total process that must be executed when a collision occurs. The
final three subroutines, EXITDEFER, FREERSC, and CHNLECHO will be described
next.,

Recall that the EXITDEFER subroutine is called from the LTFINPROP and
RTFINPROP events when the ending edge of a packet arrives to a node that has a
packet waiting in the defer file. In the EXITDEFER subroutine, shown in

Figﬁre 3-14, the packet is removed from the defer file and immediately senses
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Figure 3-12. Flow diagram of the SEARCH subroutine.
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Figure 3-13. Flow diagram of the CALC_WAIT_BACKOFF subroutine.
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.Figure 3-14.
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Flow diagram of the EXITDEFER subroutine.
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the channel. The first thing done is to save the end propagation markers.
Then the packet that must be removed from the defer file is found by using the
SLAM function NFIND, Recall from Chapter 2 that NFIND is used to find an
entry in a file that bears a relationship to an attribute. The "inrank"
variable is set to the rank of the entry in the defer file whose second attri-
bute is exactly equal to the ID node number. This entry is the packet that
must be removed using the RMOVE subroutine, recall that the defer file is
numbered (NCLNR-1). Next, an immediate sensing of the channel is scheduled
and the end propagation markers are returned.

The FREERSC subroutine is discussed here and is perhaps the simplest to
describe. All that is done in FREERSC that has significance to modeling is
that the FREE subroutine, provided by SLAM, is used to free one unit of re-
source for the packet that has finished its transmission or is being discarded
due to excessive collisions. This allows the next packet, if there is one, to
leave its node queue, the AWAIT block, and begin the process. Much of the
statistic collection is also done in FREERSC, see Figure 3-15.

The CHNLECHO subroutine does not perform any of the modeling, it is used
to check the intermediate results of the simulation. The CHNLECHO subroutine
will print out the event or subroutine that called it, the current time, the
origin node, the network status array, and the node state array.

This completes the description of the events and subroutines used to
simulate the CSMA/CD network. The following three subsections will complete
the description of the CSMA/CD simulation model. They include a discussion on
initializing the simulation, the output from the simulation, and how to change
the system configuration. The final section of this chapter will be a discus-

sion of the validation of the simulation.
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Figure 3-15.

‘ FREERSC '

set ID
inode=a(2)

\
free one unit of
resource for the
ID node

call free(id,1)

A

collect
statistics

return

Flow diagram of the FREERSC subroutine.
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3.2.4 1Initializing the Simulation

As described in Chapter 2 section 2.2.1, the INTLC subroutine can be used
to initialize the variables used to simulate the CSMA/CD network. The INTLC
subroutine is executed by the SLAM processor before the simulation begins.
This way all the variables that must be initialized are initialized before any
packets are generated. In addition to initializing variables, some variables
are set and remain unchanged throughout the simulation. The listing of the
INTLC subroutine is in Appendix A.3. 1In this section, there is a description
of the variables that are initialized and set.

The excoll and icoll arrays are initialized to zero. These arrays con-
tain the number of packets lost to excessive collisions and the total number
of collisions experienced by each node, respectively. The frstat and icnt
arrays are also initialized to zero, these arrays contain the number of pac-
kets successful on the first attempt to access the network and the total
number of packets transmitted from each node, respectively. The timegd array
is initialized to =zero, this array contains the time spent sending packets
successfully ffom each node., The timegd divided by the total time equals the
throughput. The node state array, nodest, is initialized to 5, which is the
idle state. The network status array, ntstus, is initialized to =zero to
indicate that the channel is initially idle. The attempts array is initia-
lized to zero, recall that the elements in this array contain the number of
packets successful after that elements number of attempts. The station delay
array, stadly, is set in the INTLC subroutine. The station delay array speci-
fies the spacing between network nodes. This spacing is in time and can be
the same for all nodes or different. The bitsbd and bitsgd counters are
initialized to zero, these counters keep track of the number of bits that were

unsuccessful and successful, respectively.
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3.2.5 Output From the Simulation

The output from the simulation consists of two parts. The first is the
standard SLAM Summary Report and the second is the output from the OTPUT
subroutine. In this section, the two output types will be discussed.

The SLAM Summary Report is the standard output of SLAM models. It in-
cludes the statistics for variables based on observation. These variables are
those described in section 3.2.2 which are defined in the Network Model using
the STAT statements., The SLAM Summary Report also gives file statistics.
This is the statistics for the node queues, the AWAIT blocks in the Network
Model. Included in the file statistics are the statistics for the channel
queue, the defer file, and the event calendar. There is information given for
the service activity statistics and the resource statistics. For an example
of a SLAM Summary Report output from the CSMA/CD simulation, see Figure 3-16.

The other output type is that which is the result of executing the OTPUT
subroutine, Once the end of the simulation is reached, the SLAM processor
executes the OTPUT subroutine and the particular output that the analyst has
chosen to have printed out will be written. The OTPUT subroutine has been
included so that the simulation results of some specific performance indica-
tors could be reported. These performance indicators include throughput,
number of collisions, number of packets successful on the first attempt to
access the network, number of packets successful after a given number of
attempts, number of packets transmitted, number of packets discarded due to
excessive collisions, number of successfully transmitted bits, and the number
of bits that were unsuccessful., The OTPUT subroutine is listed in Appendix

A.4, and a sample output is shown in Figure 3-17.
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l SLAM SUMMARY REPORT

SIMULATION PROJECT ETHERNET BY TISL
' DATE 8/20/1984 RUN NUMBER 1 OF 1
CURRENT TIME 0. 1000E+08
l STATISTICAL ARRAYS CLEARED AT TIME 0. 0000E+0Q
##STATISTICS FOR VARIABLES BASED ON OBSERVATION#+
l MEAN STANDARD COEFF. OF MINIMUM MAX IMUM NUMBER OF
VALUE DEVIATION VARIATION VALUE VALUE OBSERVATIONS
NODE 1 SYS. TIME 0. 2289E+04 0. 1838E+04 0. 8030E+00 0. 14303E+04 0. 1693E+05 734
NODE 2 SYS. .TIME O.2257E+04 0. 1440E+04 0. 72635E+00 0. 1403E+04 0. 2053E+05 766
NODE 3 SYS. TIME O.2242E+04 0. 1735E+04 0. 7737E+00 0. 1403E+04 0. 16B1E+05 707
NODE 4 SYS. TIME 0. 2278E+04 0. 1584E+04 0. 6953E+00 0. 1403E+04 0. 1354E+05 799
NODE 5 SYS. TIME 0. 2132E+04 0. 1389E+04 0. 6516E+00 0. 1303E+04 0. 1686E+05 656
QUEUEING DELAY 0. 2490E+03 0. 8819E+03 0. 3542E+01 0. 0O000E+00 0. 1040E+05 346463
ACCESS DELAY 0. 6020E+03 0. 1404E+04 0. 2333E+01 0. 9500E+01 0. 1679E+05 3662
CHANNEL DELAY 0. 1393E+04 0. 0000E+00 0. 0000E+00 0. 1393E+04 0. 1394E+04 34658
TOTAL SYS DELAY 0. 2243E+04 0. 1647E+04 0. 7343E+00 0. 1403E+04 0. 2053E+05 3662
l ##FILE STATISTICS##
FILE ASSOCIATED AVERAGE STANDARD MAX ITMUM CURRENT AVERAGE
NUMBER NODE TYPE LENGTH DEVIATION LENGTH LENCTH WAITING TIME
1 ARALT 0. 0163 0. 1341 2 (o] 2235. 1501
2 AWALIT 0. 0216 0. 17353 4 0 282. 0020
3 AWAIT 0. 0143 0. 1214 2 o) 202. 5833
4 AWAIT 0. 0255 0. 1807 3 [+] 318. 6508
5 AWALIT 0.0133 0. 1221 3 o 202. 2252
22 GUEVE 0. 0000 0. 0000 o [0} 0. 0000
24 0. 1934 0. 4923 4 o 457. 4522
2% CALENDAR 5. 5473 0. 5680 20 & 544, 16463
l ##SERVICE ACTIVITY STATISTICS##
ACTIVITY START NODE SERVER AVERACGE STANDARD CURRENT AVERAGE MAXIMUM IDLE MAXIMUM BUSY ENTITY
INDEX LABEL/TYPE CAPACITY UTILIZATION DEVIATION UTILIZATION BLOCKARQE TIME/SERVERS TIME/SERVERS COUNT
l [+] CHNL. QUEUE 1 0. 0000 0. 0000 o 0. 0000 25017. 0000 0. 0000
l ##RESOURCE STATISTICS##
RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAX IMUM CURRENT
NUMBER LABEL CAPACITY UTILIZATION DEVIATION UTILIZATION UTILIZATIDN
3 PACK1 1 0.1513 0. 3583 1 o
2 PACKRQ 3 0. 1514 0. 3584 1 1
3 PACK3 1 0. 1442 0.3513 1 [+]
4 PACK4 1 0. 1546 0. 3534 1 (¢}
S PACKY 1 0. 1266 0. 3325 1 [o]
RESOURCE RESOURCE CURRENT AVERAGE MINIMUM, MAX IMUM
NUMBER LABEL AVAILABLE AVAILABLE AVAILABLE AVAILABLE
1 PACK1 1 0. 84895 o 1
2 PACK2 0 0. 8486 0 1
3 PACK3 1 0. 8558 o) 1
4 PACK4 1 0. 8434 o) 1
' S PACKS 1 0. 8734 o 1
I Figure 3-16. Sample SLAM Summary Report from the CSMA/CD simulation,
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TIME SPENT SENDING GOOD PACKETS FROM STATION

1 = 1021258. 38 THRQUGHPUT = 0. 102

TIME SPENT SENDING GOOD PACKETS FROM STATION 2 = 1067234. 50 THROQUGHPUT = 0. 107
TIME SPENT SENDING GOOD PACKETS FROM STATION 3 = 982258. 69 THRQUGHPUT = (. 098
TIME SPENT SENDING GOOD PACKETS FROM STATION 4 = 1113218. 50 THRQUGHPUT = 0. 111
TIME SPENT SENDING GOOD PACKETS FROM STATION 5 = 912579. 94 THRQUGHPUT = 0. 091
THE TOTAL TIME SPENT WITH GOOD PACKETS = 5094550. 00 TOTAL THROQUGHPUT = 0. 510
TOTAL % OF COLLISIONS THAT OCCURED AT STATION 1 = 497

TOTAL # OF COLLISIONS THAT OCCURED AT STATION 2 = 741

TOTAL # OF COLLISIONS THAT OCCURED AT STATION 3 = 649

TOTAL # OF COLLISIONS THAT OCCURED AT STATION 4 = 682

TOTAL # OF COLLISIONS THAT OCCURED AT STATION 5 = 508

TOTAL # OF COLLISIONS = 3277 COLLISIONS PER MILLISECOND = 0. 3277

# OF PACKETS SUCCESSFUL ON THE FIRST ATTEMPT TO ACCESS NET FROM 1 = 301

# OF PACKETS SUCCESSFUL ON THE FIRST ATTEMPT TO ACCESS NET FROM 2 = 306

# OF PACKETS SUCCESSFUL ON THE FIRST ATTEMPT TO ACCESS NET FROM 3 = 2279

# OF PACKETS SUCCESSFUL ON THE FIRST ATTEMPT TO ACCESS NET FROM 4 = 309

# OF PACKETS SUCCESSFUL ON THE FIRST ATTEMPT TO ACCESS NET FROM 5 = 232

TOTAL # OF 1st ACCESS = 1447 %Z OF 1st ACCESS = 39. 5139
# OF PACKETS SUCCESSFUL ON THE 1st ATTEMPT = 2797 PERCENTAGE = 76. 379
# OF PACKETS SUCCESSFUL ON THE 2nd ATTEMPT = 169 PERCENTAGE = 4.615
# OF PACKETS SUCCESSFUL ON THE 3rd ATTEMPT = 31 PERCENTAGE = (.847
# OF PACKETS SUCCESSFUL ON THE 4th ATTEMPT = 222 PERCENTAGE = &. 062
# OF PACKETS SUCCESSFUL ON THE 5Sth ATTEMPT = 214 PERCENTAGE = 5. 844
# OF PACKETS SUCCESSFUL ON THE &th ATTEMPT = 87 PERCENTAGE = 2.376
# OF PACKETS SUCCESSFUL ON THE 7th ATTEMPT = 57 PERCENTAGE = (. 557
# OF PACKETS SUCCESSFUL ON THE 8th ATTEMPT = 35 PERCENTAGE = 0.956
# OF PACKETS SUCCESSFUL ON THE 9th ATTEMPT = 16 PERCENTAGE = 0. 437
# OF PACKETS SUCCESSFUL ON THE 10th ATTEMPT = i2 PERCENTAGE = 0.328
# OF PACKETS SUCCESSFUL ON THE 1lth ATTEMPT = 9 PERCENTAGE = 0. 246
# OF PACKETS SUCCESSFUL ON THE 12th ATTEMPT = 3 PERCENTAGE = 0.082
# OF PACKETS SUCCESSFUL ON THE 13th ATTEMPT = 2 PERCENTAGE = 0.055
# OF PACKETS SUCCESSFUL ON THE 14th ATTEMPT = 1 PERCENTAGE = 0.027
# OF PACKETS SUCCESSFUL ON THE 15th ATTEMPT = 3 PERCENTAGE = 0.082
# OF PACKETS SUCCESSFUL ON THE 146th ATTEMPT = 0 PERCENTAGE = 0. 000
% SUCCESSFUL ON 1st ATTEMPT =. 76.3790

TOTAL # OF PACKETS TRANSMITTED FROM STATION 1 = 734

TOTAL # OF PACKETS TRANSMITTED FROM STATION 2 = 764

TOTAL # OF PACKETS TRANSMITTED FROM STATION 3 = 707

TOTAL # OF PACKETS TRANSMITTED FROM STATION 4 = 799

TOTAL # OF PACKETS TRANSMITTED FROM STATION 5 = 656

TOTAL # OF PACKETS TRANSMITTED = 3662

# OF DISCARDED PACKETS FROM 1 = |

# OF DISCARDED PACKETS FROM 2 = O

# OF DISCARDED PACKETS FROM 3 = 2

# OF DISCARDED PACKETS FROM 4 = O

# OF DISCARDED PACKETS FROM 5 = 1
TOTAL # OF DISCARDED PACKETS = 4 % OF PACKETS DISCARDED = 0. 1092

TOTAL # OF SUCCESSFUL BITS TRANSMITTED = 14983168

TOTAL # OF UNSUCCESSFUL (DISCARDED) BITS = 16384

Figure 3-17. Sample output of the OTPUT subroutine.
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3.2.6 Changing the System Configuration

The analyst will most likely want to change the system configuration at
some time. This can be done very easily by modifying the Network Model and
the PARAMS file. The PARAMS file is used to avoid typing the declaration
statements at the top of each event and subroutine. In it there are several
common blocks and parameter statements. The parameter statements are provided
by FORTRAN 77 and are a way of setting up constants. The PARAMS file is
listed in Appendix A.5. In this section, a brief description of how the
system configuration is modified will be given.

To change many of the system parameters requires that the variable be
modified in the PARAMS file. Such things as the jam signal, the slot time,
the interframe spacing, and the maximum number of collisions can be changed by
modifing them in the PARAMS file, To change the number of nodes being simu-
lated requires that the maxsta parameter in the PARAMS file be changed and
that the Network Model of Appendix A.1 be changed. In the Network Model the
analyst must remove the semicolon in the first column of a node. This will
turn that particular node on. The line capacity 1is changed by changing the
mean interarrival time in the CREATE blocks of the Network Model. Recall from
equation (3-3) that the mean interarrival time is a function of the line
capacity. Also the packet length in microseconds, atrib(9), must be modified
if the line capacity is changed. Recall that the packet length in seconds

equals the packet length in bits divided by the line capcity.

3.3 vVvalidation of the Simulation Model

In this section, an experiment which duplicates Shoch's measurements [6,
7, 8] will be presented. This experiment serves as a way to validate the

simulation.
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In Shoch's work, the Ethernet has the following configuration [61]:

- line capacity: 2.94M bits/second,

- bus length: 550 meters (propagation delay = 2.75 microseconds),

- slot time: round-trip bus delay = 5.5 microseconds

- backoff algorithm: binary exponential backoff, truncated at 28,

- jam time after a collision = 32 bits = 10.8844 microseconds,

- packet length: 4096 bits per packet,

-~ packet arrival rate: 10% per host, for 5 to 15 hosts.,

From the above configuration and using equation (3-3), the mean packet
interarrival time can be calculated as 13,931.97265625 seconds per packet for
Poisson arrivals. The simulation was run under the above configuration. The
results are compared with Shoch's measurements. Figure 3-18 presents the
system throughput under various traffic loads and a packet length of 4096 bits
per packet, In Table 3-3, the fairness of access among network nodes are
compared. These results show that the simulation model is able to closely
simulate the behavior of a real system.

The simulation can produce the average system delay, which Shoch was not
able to measure. Figure 3-19 presents the simulated average system delay with
a comparison to the simulation results of Hughes and Li [9]. A comparison of
the simulated average system delay and the delay reported by Acampora et al
[10], shows good agreement.

In this chapter the CSMA/CD simulation model has been described. The
programs are listed in Appendix A. The validation of the model was presented,
and it was seen that the model closely simulates a real system. The simula-
tion can be used to do performance studies of Ethernet-like networks. The
simulation can also be used to do voice/data performance studies of Ethernet-

like Local Area Networks, and that is the subject of Chapter 4,
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4.0 MULTIRATE VOICE CODING FOR LOAD CONTROL ON CSMA/CD NETWORKS

In Chapter 3 the simulation of a Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) network was discussed. It was shown that the
simulation model accurately predicts the performance of a real system. This
simulation model can now be used to perform simulation studies of voice/data
networks. In this chapter the simulation of a voice/data network in which the
voice coding rate changes with the load will be discussed.

There have been previous studies of combined voice/data Local Area Net-
works [12, 13, 14]. The study done by DeTreville [12] was a comparison of the
CSMA/CD type of network with a token bus. In that study the token bus was
found to perform somewhat better. The Nutt and Bayer study [13] gives a
comparison of various backoff algorithms appropriate for voice. In the study
by Musser, et al., [14] the virtual token protocol (GBRAM) and the CSMA/CD
protocol were compared, in addition, 1listener tests were performed which
confirmed that two percent of the voice packets could be lost and the voice
quality would still be acceptable to the user. The results presented in this
study agree with the results given in [12, 13, 14]. 1In this study the applic-
ability in using a multirate voice coding scheme for load control will be
considered.

The simulation of voice on a Local Area Network is characterized by
periodic arrivals. With periodic voice packet arrivals the voice source is in
the talk-spurt mode all the time. The voice packet is characterized by its
generation period. The generation period is the packet length in bits divided
by the voice coding rate in bits-per-second, see Equation (4-1).

G = P/R (4-1)
where,

G = generation period in seconds,
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P

[

packet length in bits

R

[

voice coding rate in bits-per-second

After every generation period seconds a new voice packet has been crea-
ted. There is a continuous flow of voice packets from the source, however,
the time to transmit over the line is much less than the generation period.
The time required to transmit the packet is the packet length in bits divided
by the line capacity in bits-per-second. If a packet has not successfully
transmitted over the network in the amount of time specified by its generation
period, the packet will be discarded and is considered lost. It has been
shown [15] that two percent of the voice packets can be lost and there will be
no effect on the voice quality.

Voice is a compressible source, that is, voice can be coded at different
rates and the voice quality decreases as the coding rate decreases [16].
There is a technique known as embedded coding [17] which allows the use of
variable rate packets to be generated. The idea here is that a packet genera-
ted at a high rate can have selected bits stripped away and the resulting
packet is of a lower coding rate. The concept of embedded coding or the
ability to generate packets at different rates from the same voice source has
been assumed in this study.

The basic idea of multirate voice coding for load control is that the
voice quality can be traded for network load. When an increase in the traffic
intensity on the network has been observed, the voice coding rate will be
lowered. By decreasing the voice coding rate the generation period is in-
creased causing fewer voice packets to access the network. The decrease in
coding rate reduces the traffic on the network. This system is essentially a
feedback loop. The decrease in rate causes less traffic, when there is less

traffic the rate is increased, which causes an increase in the traffic.
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Figure 4-1 shows an integrated voice and data network which has some method of
measuring the traffic and adjusting the voice coding rate. It was found that
the number of collisions per millisecond gives a good indication of the amdunt
of traffic on the network, see Section 4.2.

This Chapter is divided into six sections. The first section describes
the choice of voice coding rates. The second section describes the feedback
algorithm. The third section describes the modifications to the basic CSMA/CD
protocol of Chapter 3, Figure 3-1, The fourth section describes how the
multirate algorithm was implemented into the existing CSMA/CD simulation
model., The fifth section gives the simulation results, and the sixth section

describes the system dynamics.

4.1 Choice of vVoice Coding Rates

The embedded coder implemented at the Telecommunications and Information
Sciences Laboratory (TISL) allows four different voice coding rates, and is
based on [17]. The four rates must be chosen such that they are separated by
8 kilo-bits-per-second (kbps). The rates chosen range from 24kbps to 48kbps
and the packet length chosen is 768 bits.

The packet length is a constant and there‘is no specification on which
bits are overhead. In this study, the distinction between overhead bits and
information bits has not been made. The voice coding rates (kbps) and the
corresponding generation periods (milliseconds, ms) are shown below in Table
4-1, recall from Equation (4-1) that the generation period is the packet
length divided by the coding rate. Choosing the voice coding rate is equiva-
lent to choosing the generation period, similarly, changing the voice coding
rate is equivalent to changing the generation period if the packet length is

constant.
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Voice Coding Generation
Rate, kbps Period, ms
48.0 16.0
40.0 19.2
32.0 24.0
24.0 32.0

Table 4-1 The chosen voice coding rates and the corresponding gen-
eration periods, for a voice packet length of 768 bits.

4.2 The Feedback Algorithm

The need for a feedback algorithm was described above. Since changing
the voice coding rate changes the amount of traffic on the network, the need
for a feedback system is clear. When the traffic increases the voice coding
rate is decreased. But decreasing the voice coding rate will decrease the
amount of traffic. So, the feedback algorithm must adapt to the changing load
conditions., In this section the feedback algorithm will be described. The
first subsection will describe the method used to measure the amount of traf-
fic on the network, and the second subsection will describe the feedback

equation,

4.2.1 Collisions Per Millisecond as a Load Indicator

An important performance indicator of computer networks is the packet
delay, as the traffic on the network increases the packet delay increases.
Therefore, the parameter used to measure the trafffic on the network should
increase when the packet delay increases. It was found that collisions per
millisecond gives a good indication of the packet delay, and therefore gives
an indication of the amount of traffic on the network. Figure 4-2 shows that
the collisions per millisecond increases at the same rate as the delay.

Collisions per millisecond is easy to measure by counting the jam sig-

nals. Recall that when a collision occurs, a jam signal is transmitted to
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inform all the nodes that a collision has occured. Wwhen a jam signal is
received, the node will increment a counter, this jam counter will be used to

obtain a value for the rate of collisions per millisecond.

4,2,2 The PFeedback Equation

The feedback equation must be able to change the voice coding rate dynam-
ically. When the number of collisions per millisecond goes up the voice
coding rate must come down, and when the collisions per millisecond goes down
the rate must go up. It was found that Equation (4-2) gave the desired char-

acteristics.

rate = ravg + q (Q - colpms) (4-2)
where,
rate = the new voice coding rate
ravg = 33000 = the average voice coding rate
q = 13000 = multiplier
Q = 3.3 = average rate of collisions per millisecond
colpms = the measured rate of collisions per millisecond

The values for the three parameters, ravg, q, and Q were chosen by observing
the non-multirate network and by experience. The value for the multiplier, q,
was chosen to insure that a small change in the (Q-colpms) term will cause a
large change in the rate.

The (Q-colpms) term of Equation (4-2) is an error signal, When the
colpms is greater than the average value, @, the term is negative and the rate
is driven down. When the error signal is positive, colpms is less than the
average, the rate is driven higher. Wwhen the error signal is zero, colpms is

equal to the average, the rate obtained is the average voice coding rate.
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The voice coding rate obtained from Equation (4-2) must be truncated to
one of the four possible values given in Table 4-1. The cutoff points used
for truncating the value for the voice coding rate obtained from the feedback

equation are given below in Table 4-2.

Rate Obtained From Rate is
the Feedback Egquation Truncated to

44 < rate 48,0

36 € rate < 44 40.0

28 < rate < 36 32.0

rate < 28 24.0

Table 4.2 Truncation of the rate obtained from the feedback equation.

4.3 Protocol Modifications for Multirate Voice and Data

The CSMA/CD protocol described in Chapter 3, Figure 3-1, must be modified
for voice packets and multirate techniques. The voice packets can be discar-
ded for two reasons. If a voice packet experiences excess collisions or the
packet lifetime is exceeded the packet will be discarded., The data packets
are discarded only if too many collisions occur. When a voice or data packet
experiences too many collisions, greater than 16, the packet is said to be
discarded. If a voice packet is not successfully transmitted in the amount of
time specified by the generation period then the packet lifetime has been
exceeded, and the packet is said to be lost.

To modify the protocol for multirate voice techniques requires that the
generation period be set when the voice packet enters the network. By setting
the generation period the voice coding rate is effectively being set. 1In this
study the voice packet length is a constant 768 bits, therefore setting the
generation period is equivalent to setting the voice coding rate. The modifi-

cations to the protocol are shown in the flow diagram of Figure 4-3.
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4.4 Implementation Into the Existing CSMA/CD Simulation Model

To implement the multirate voice algorithm into the existing simulation
model requires that the Network Model and the Discrete Event Model be modi-
fied. 1In the Network Model the simulation of voice nodes must be done, and in
the Discrete Event Model the modifications to the protocol must be incor-
porated. This section is divided into five subsections. The first describes
the new variables and the new files used. The second describes the modifica-
tions to the Network Model, the third describes the modifications to the
Discrete Event Model. The fourth subsection describes the configuration of
the Local Area Network, and the fifth gives some sample outputs of the simula-

tion.

4.4.1 New Variables and File Assignments
In addition to the variables described in Chapter 3, Section 3.2.1, there
are several new variables which are outlined below. The new variables include

SILAM variables, model variables, and measurement variables.

4.,4.1.1 SLAM Variables .

The SLAM variables include the attributes and the global variables. The
attribute descriptions given in Chapter 3 apply to the attributes here. There
are three additional attributes and they have been listed below.

atrib(15) = set to 1 if the voice packet lifetime is exceeded

atrib(16) = set to 1 if packet originated at a data node, set to 2 if
packet originated at a voice node

atrib(18) = the generation period for the particular voice packet

In addition to the new attributes, there are several new global varia-

bleé. The new global variables are listed below.
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xx(1)
xx(2)
xx(3)
xx(4)
xx(5)
xx(6)
xx(7)
xx(8)
xx(9)
xx(10)
xx(11)
xx(12)
xx(13)
xx(14)

xx(15)

xx(16)

xx(17)
xx(18)
xx(19)
xx(20)
xx(21)
xx(25)
xx(26)

xx(30)

not

the

not

the

the

not

the

the

not

the

the

the

next

next

used

next

used

next

next

next

used

next

next

next

next

used

next

next

used

next

next

next

generation period to be used

generation period to be used

{node 3 is a data node)

generation period to be used

(node 5 is a data node)

generation period to be used
generation period to be used

generation period to be used

(node 9 is a data node)
generation period to be used
generation period to be used
generation period to be used
generation period to be used
(node 14 is a data node)
generation period to be used
generation period to be used
(node 17 is a data node)
generation period to be used
generation period to be used

generation period to be used

xx(24) not used

the simulated time (ttfin)

xx(

29) =

not used

by

by

by

by
by

by

by
by
by

by

by

by

by
by

by

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

voice

the mean interarrival rate for the data nodes
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4.4.1.2 Model variables

The new model variables will be described here. There were several new

variables created so that the data load can be changed dynamically during the

simulation. These
loadtim
loadu({numchg)
numlds
numrlds
load(numlds)
rload(numrlds)
allrand
numchg

There are new

variables are listed below.

time between load changes

load used during a specific time range
= number of non-random loads

= number of random loads

non-random load array, contains the loads

= random load array, contains the possible loads

= 1f 'yes' then the loads will be determined randomly
= number of load changes or time ranges

variables which are used to calculate the collisions per

millisecond and they are 1listed below. The collisions per millisecond is

calculated over a period of time and there is a counter which keeps track of

the number of collisions. Every period microseconds a new value is calculated

for colpms, the voice coding rate is determined and the colcnt counter is set

to zero every period microseconds. The collisions per millisecond and voice

coding rate variables are listed below.

period = 32

colent

colpms

rate

ratenow

= amount of time over which the collisions per millisecond
is being calculated, in milliseconds

= counter that keeps track of the number of collisions that
occur during a period

= colcnt/period = amount of collisions per millisecond for
a specific period

= truncated voice coding rate in the DETGEN subroutine

= calculated rate for a specific period ,
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rateout

choice(4)

truncated voice coding rate in the DETRATE event

the four possible voice coding rates

In addition to the variables described above, there are some miscellaneous

variables.

capcty

outi

out?2

nd8

nd8x2

These include the line capacity, and are listed below.

1.0 = capacity of the line being simulated in mega-bits-per-
second

specifies the file for keeping the time versus voice coding
rate for all the nodes, file TR.DAT

specifies the file for keeping the time versus collisions per
millisecond for all the nodes, file CT.DAT

specifies the file for keeping the time versus voice coding
rate for node 8, file TR8.DAT

specifies the file for keeping the time versus voice coding

rate for node 8 (for plotting purposes), file TR8B8PLOT.DAT

4.4.1.3 Measurement Variables

The new measurement variables have been listed below.

sumrate

numrate

sum8

num8

sumoa

= the sum of the voice coding rates used by all the nodes
during a specific time range

= the number of the voice coding rates used by all the
nodes during a specific time range

= the sum of the voice coding rates used by node 8 during a
specific time range

= the number of the voice coding rates used by node 8
during a specific time range

= gum of all the voice coding rates, used to compute the

overall average rate
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numoa

sum8oa

nun8oa

numc

numc

sumdel

numdel

avgrate(numchg)

avg8{numchg)

avgcpm{numchg)

datadel(numchg)

rwdisc(maxsta)

rwdiscp(maxsta)

.lstpak(maxsta)

number of all the voice coding rates, used to compute

the overall average rates

sum of node 8's rates, used to compute the overall aver
age rate for node 8

number of node 8's rates, used to compute the overall
average rate for node 8

sum of the collisions per millisecond that were calcula-
ted during a specific time range

number of the collisions per millisecond that were calcu-
lated during a specific time range

sum of data delay experienced during a specific time
range

number of data delay experienced during a specific time
range

each element is the average voice coding rate for all the
nodes combined during a specific time range

each element is the average voice coding rate for node 8
during a specific time range

each element is the average collisions per millisecond
during a specific time range

each element is the average data delay during a specific
time range

each element contains the number of packets lost in a row
due to excessive collisions for a specific node

each element contains the number of packets lost in a row
due to excessive collisions for a specific node

each element contains the number of packets lost due to
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excess of lifetime for a specific node

rwlst(maxsta) = each element contains the number of packets lost in a row
due to excess of lifetime for a specific node
rwlstp(maxsta) = each element contains the number of packets lost in a row

due to excess of lifetime for a specific node

4.4.1.4 File Assignments

The file assignments are given below.

Files 1-20 Reserved for the AWAIT Blocks at each station
File 21 Channel QUEUE Block

File 22 Defer file

File 23 Event Calendar

4.4.2 Modifications to the Network Model

The changes that were made to the Network Model of the CSMA/CD simulation
will be desribed here. The major change is that voice nodes are being simula-
ted. The voice nodes will generate packets at a periodic rate instead of
Poisson. Also, the voice nodes have an additional attribute associated with
them, atrib(18), which specifies the generation period. A shortened version
of the Network Model that was used to simulate the multirate voice system is
given in Figure 4-4, the complete listing is in Appendix B.1.

In this section Figure 4-4 will be discussed. Since most of the code in
Figure 4-4 was discussed in Chapter 3 this section will be brief. The new
code is the additional statistics being collected, lines 14 through 17, and
the voice nodes., The voice nodes are shown on lines 30 through 37, 40 through
47, and 65 through 72. The data node, shown on lines 52 through 58, is the

same as the data nodes of the Network Model of Chapter 3 with some excep-
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VONT DL -

GEN, ED FRIEDMAN. MULTIRATE LOAD CNTRL. B/20/84, 1, NO. NOJ
LIMITS. 22, 1B, 750;

1)
STAT. 1.NODE 1 S8YS TIME

STAT, 20, NODE 20 SYS TVIME
‘o

6TAT, 21, QUEUE DLY DATA
STAT, 22, ACCSS DLY DATA
STAT, 23, CHNL DELAY DATA
STAT, 24, TOTSYS DLY DATA
STAT, 23, QUEVE DLY VOICE
STAT. 26, ACCSS DLY VOICE
STAT, 27, CHNL DLY VOICE
STAT. 20, TOTSYS DLY VOICE

3
NCTWORK;
i
RESOURCE/PACK, 1 /PACKR, 2/PACKI, 3/PACKA. 4/PACKS, 3/PACKS. &/
PACK7, 7/PACKB, B/PACKY, 7/PACK10, 10/PACKLL, L1/
PACK12, 12/PACK13. 13/PACK14, 14/PACK1S, 1 5/PACKL&. 167
PACK17, 17/PACK18, 18/PACKLF, £ 9/PACR20, 20:

MODEL. OF THE NUMBER OF STATIONS ON THE ETHER

CCCLLLCLLCHvoicpaDIDDIIDIDDD
CREATE, XX$1).2900. 1, create packets at node 1
AGSIGN, ATRIB(2) =1,
ATRIB(9)=748. 0,
ATRIB(111=748. Q.
ATRIB(1&6)=2,
ATRID(1B)=XX{1), 1; set attridbutes
AWALIT(1). PACKL, packets wait for previous packet
ACT. 4, CHNL, immedisate branch to the channel

to finfsh

i
§ CCLLCCCCCCnvoicendOdIIDIDDD
CREATE, XX(2), 7300, 1;
ASSIGN. ATRIBI2)=2. O,
ATRIB(9)=768. 0,
ATRID(§1)=7648. 0,
ATHIB(16i=2,
ATRID(18)=XX(2), 1)
AWAITI2), PACKZ,
ACT, » v CHNLS

)

1 <CCLLCCLLCndatanddIdIIIDIID>
CREATE, EXPON(XX{30) ). 2000, §1
ASSICN, ATRIB(2)=3. 0.

ATRIB(9)=2040,
ATRIB(11)=2048,
ATRIB(1&)=1. 1)
AWAIT(33, PACK3:
ACT, s+ CHNL,

H
1 <KL voic o addDIDIIDDD
CREATE. XX (20), 8500, 1,
ASSIGN, ATRIB(2)=20,
ATRID(9)=74R,

. ATRIBL11)=7&8B,
ATRID(16)=2,
ATRID(18)=XX(20}, 13

AWAIT(20), PACK20:
ACT. » « CHNLS

COMBINE STATIONS TO FORM CHANNEL

A ---.

HNL  QUEUE(21)) dump entities into queue

ACT: immediate branch to channel model
i

EVENT, 1 gatsway to discrete wvent model,
4 entities into event 1 ( sense )
‘

AGSIGN, XX{25}=60000000/ sut xx(23) equal tu tifin
[

END:
INIT, 0. 600000004
FINi

Figure 4-4. Listing of the Network Model usad Por the multirate
voice simulations on tha CSMA/CD Local-Area-Network.
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tions. The 16th attribute is set to one, the 16th attribute is used to indi-
cate whether the packet originated at a data node, atrib(16) is set to 1, or
at a voice node, atrib(16) is set to 2. 1In addition, the data node now has a
variable, xx(30), for the mean interarrival time, this is done so that the
simulated load can be changed dynamically throughout the simulation.

The voice nodes have a constant interarrival time, which is specified as
a global variable. The interarrival time for node 1 is xx(1), and that for
node 2 is xx(2), and so on. The interarrival time is the generation period
for the particular node. This global variable will be changed in the Discrete
Event Model whenever a voice coding rate change is required. The voice pac-
kets have a smaller packet size and the 16th attribute is set to two. In
addition, the voice nodes have an 18th attribute, this attribute is the gen-
eration period of the particular packet. The rest of the code in Figure 4-4

was explained in Chapter 3.

4.4,3 Modifications to the Discrete Event Model

The modifications to the protocol given in Figure 4-3 are to be implemen-
ted in the Discrete Event Model. Most of the events and subroutines discussed
in Chapter 3 remain unchanged, however, the SENSE event, COLLISION subroutine,
CALC_WAIT BACKOFF subroutine, and the FREERSC subroutine have been modified.
In addition, there are two new events and one new subroutine. The first new
event is the DETRATE event, which calculates a new voice coding rate using the
feedback equation every period microseconds (recall that period is 32000
microseconds). The second new event is the LOADCHG event, this event is used
to dynamically change the data load and is executed every loadtim microsec-
onds. The new subroutine is the DETGEN subroutine, this subroutine is called
for each voice packet when it attempts to access the network for the first
time. The DETGEN subroutine determines the generation period.
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In this section the modified event and subroutines will be described
first, and then the new events and subroutine will be described. The code
will not be stepped through due to its length. The events and subroutines
will be described using flow diagrams. See Appendix B.2 for a complete list-
ing of the modified and new events and subroutines.

The modified SENSE event is shown in Figure 4-5. The ID is set as before
and then a check is made to see if the packet is voice and if this is the
first time that the packet has tried to access the network. If the condition
is true then the DETGEN subroutine is called so that the generation period can
be determined, and the arrival time of the next packet is set. Then the first
access attribute is incremented, and then the time left after the collision
discrimination period is calculated. Next, there is a check to see if the
packet is voice and if the time it has been in the system exceeds the genera-
tion period. 1If this condition is true then the packet is lost, and the 15th
attribute is set to 1 and the FREERSC subroutine is called. The rest of the
SENSE event is the same as the non-multirate voice case.

The CALC_WAIT BACKOFF subroutine has been modified slightly. The only
difference here is that the backoff is calculated separately for voice and
data packets. The voice_ packets have their backoff calculated using the
truncated binary exponential scheme, with the truncation at nine retransmis-
sions. The data packets are truncated at ten retransmissions. The modified
CALC WAIT BACKOFF is shown in Figure 4-6,

The COLLISION and FREERSC subroutines have also been modified. The only
modification to COLLISION is that the colent counter is incremented. Recall
that the colcnt counter is used to keep track of the number of collisions that
have occurred during the amount of time specified by period. The only modifi-

cations to FREERSC are that additional statistics are collected.
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SENSE

set 1D
inode=al(2)

entered from:
Network Model

scheduled from:
EXITDEFER
CALC_WAIT_DACKOFF

this Is the first time that this
volce packet has accessed the net

Xx{inode)=a(38)

increment the flirst
access attribute
a(17)=a(17)+1

\d

calculate the time Jeft after the
collision discrimination period

a{10)=a(9)-TNOW
T

tnow-a{1)=>a(18

and
a(l6)=2

the current packet is voice an
its l1i1fetime has been exceeded

‘I

N\

a(15)=1

et a(15) to Indicate excess of llfcllncl

[

channel
is idle

b
transsission event
a(5)=1

set node state to
transmitting
nodest(id)=~itrans

A

Lo,

{‘\

ntstus(id)=
?

channel
t is busy

transsisslon event
a(s)=1

set node state to
defering
nodest(id)eidefer

schedule the transamisslon

to begin after watting
the interframe spacing

call schdl(2.waftim,atrib)

return

file the packet In the
defer flle, the packet will
return when the channel
becomes ldle

call filem((nclnr-1),atrib)

Figure 4-5. Flow diogram of the SEXNSE event.
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QALC_WAIT_BACK@ called from:
COLLISION

set ID
inode=a(2)

trund=10
trunv=9

too many attempts

set node

state to

terminate packet
nodest(id)=iterm

a{6)=mxcoll
?

determine backoff
for voice packet

return
Y /\ N
a(16)=1
\/
- . \
determine backoff
for data packet
e -~
] AL )
schedule a sensing of the channel
after waiting the backoff
call schdl(1,bakoff,atrib) .
Figure 4-6. Flow diagram of the CALC_WAIT_BACKOFF subroutine.
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The DETGEN subroutine is shown in Figure 4-7. This subroutine is called
from the SENSE event whenever a voice packet enters SENSE for the first
time. This subroutine truncates the rate which was calculated using the
feedback equation, ratenow, to one of the four possible rates specified in
Table 4-1, see Figure 4-8 for a flow diagram of the truncating algorithm. The
truncated rate is then used to calculate the generation period of the packet.

The DETRATE event is shown in Figure 4-9. This event is executed every
period microseconds, 32000. The parameters in the feedback equation are
set. Then the event is scheduled to be executed again after period micro-
seconds have elapsed. Next the rate of collisions per millisecond is calcula-
ted and the colcnt counter is set to zero. Then the voice coding rate that is
to be used over the next period microseconds is calculated using the feedback
equation and the calculated rate is truncated using the algorithm of Figure 4-
8.

The LOADCHG event is shown in the flow diagram of Figure 4-10. This
event is executed every loadtim microseconds. When LOADCHG is executed the
load being simulated by the data nodes is changed. Therefore, every loadtim
microseconds a new load is being simulated. This way the traffic on the
network is changing throughout the simulation. The load can be the same
throughout the simulation by initializing the rload and load arrays to the
same value. To have the load change randomly, the user would choose the
sequence of loads desired and place them in the rload array. The allrand
variable would be set to 'yes' and the loadtim variable would be set to the
amount of time that each particular load is to be simulated.

This completes the description of how the CSMA/CD simulation model of

Chapter 3 was modified to simulate the multirate voice and data system. The
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( DETGEN ’ called from:
SEXSE

truncate ratenow to one of the values
specified, by setting rate to one

of the four rates specified in the
‘choice' array

set the 18th attribute equal to the
generation period
a({18) = 1000000*a(9)*capcty/rate

return

Flow diagram of the DETGEN subroutine.
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Figure 4-8.

truncaling the used by:
voice coding rate DETGEN
DETRATE
Y
ratenow<=28Kk
\
choice(1)
v
ratenow<36k
\
choice(2)
Y
ratenow<44k
choice(3)
choice(4)

<:j return > <:: return -j> | return , < return )

Flow diagram of the process required to truncate the
calculated value of the voice coding rate to one
of the four possible rates.
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Figure 4-9.

(  DETRATE ,

bigq = 3.3
litg = 13000
ravg = 33000

schedule the detrate event to be
executed after 'period' microseconds
schdl(9,period,atrib)

y

calculate the collisions per millisecond
colpms = 1000*float(colcnt)/period

/

set colcnt to zero
colcnt = 0

calculate the voice coding using the
feedback equation
ratenow = ravg + litq * ( bigq - colpms )

truncate ratenow to one of the values
specified, by setting rateout to one
of the four rates specified in the
'choice' array

return

Flow diagram of the DETRATE event.
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LOADCHG

i = int(tnow/loadtim)

scheduled from:
INTLC
LOADCHG

allrand='yes'
?

for the data loads
mean interarrival
xx(30) = rload(i+1)

set the global variable

/

set the global variable
for the data loads

mean interarrival
xx(30) = load(i)

Pl
P Ty

”
"

loadtim*float(numchg-1) |

<

schedule the LOADCHG event
to be executed after
microseconds have elapsed
schdl(10, loadtim,atrib)

'loadtim'

Figure 4-10.

return

Flow diagram of the LOADCHG event.
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simulation of voice nodes was described in Section 4.4.2, where a shortened
version of the Network Model was stepped through. The portions of the Dis-
crete Event Model that were modified have been described, and the new events
and subroutine were discussed., The last two topics of this section give the
configuration of the network and some sample outputs, respectively. The

configuration to be presented was used to obtain the simulation results of

sections 4.5 and 4.6.

4.4.4 System Configuration
The configuration used to obtain the simulation results is given below.

This configuration is set up in the INTLC subroutine and the PARAMS file, The
INTLC subroutine has been expanded due to the many new variables, see Appendix
B.3 for a complete listing of the modified INTLC subroutine. The PARAMS file
has also been expanded, see Appendix B.4 for a complete listing.

- line capacity: 1 mega-bit-per-second

- bus length: approximately 1 kilometer (4.5 microseconds)

- slot time: round-trip bus delay = 9.0 microseconds

- backoff algorithm for data: binary exponential backoff truncated at

210

- backoff algorithm for voice: binary exponential backoff truncated at

29

- jam time: 4.8 microseconds

- interframe spacing: 9,6 microseconds
- data packet length: 4096 bits

- voice packet length: 768 bits

- five data nodes denerating Poisson arrivals
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4.4.5 Sample Outputs

In this section there will be two types of output discussed for the
constant data load case and the random data load case. The first output is
the usual SLAM Summary Report and the second is the output from the OTPUT
subroutine, see Appendix B.5 for a listing of the OTPUT subroutine.

The constant data load case will be discussed first. Figures 4-11 and 4-
12 show sample outputs of the constant data load case. Figure 4-11 is the
SLAM Summary Report and Figure 4-12 is the output from the OTPUT subroutine.
The SLAM Summary Report contains the usual information, the system delay, the
file statistics, service activity statistics, and resource statistics. The
output from the OTPUT subroutine contains all of the information that was
discussed in Chapter 3 for the non-multirate case with some additiocnal infor-
mation, In addition to the information that was presented in Chapter 3, there
is more information presented on the number of packets discarded due to exces-
sive collisions. The percent discarded for each node and the number of pac-
kets discarded in a row is given. The number of packets, the percentage, and
the number of packets lost in row due to excess of lifetime is presented. The
combined, number and percentage of packets discarded and lost is presented. A
table is presented which shows the average voice coding rate, the data load,
the average rate of collisions per millisecond, and the average data delay for
specific time ranges. In the example shown here the information in the table
is presented every three seconds, so the loadtim variable was set to three
seconds. Next, the overall average voice coding rate for all the nodes com-
bined and that for a single node, node 8, is given. The average percent of
the load supplied by the data nodes is given. The average collisions per

millisecond and the data delay are presented.
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NODE 1 SYS TIME O
NODE 2 SYS TIME O.
NUDE 3 SYS TIME O
4
NODE |17 SYS TIME O.
QUEUC DLY DATA O.
ACCSS DLY DATA O
CHNL DELAY DATA O
TOTSYS OLY DATA 0O
QUEUE DLY VDICE O.
ACCSS DLY VOICE O
CHNL DLY VDICE O
TOTSYS DLY VOICE ©

FILE ASSOCIATED
NUMBER NODE TYPE

1 AWATT

2 AWALT

17 AWAIT
29 QUEUE
30
31 CALENDAR

ACTIVITY START NODE
INDEX LABEL/TYPE

o CHNL. QUEUE

RESOURCE RESOURCE CURRENT AVERAGE
CAPACITY UTILIZATION DEVIATION UTILIZATION UTILIZATION

NUMBER LABEL

SLAM SUMMARY REPORT

SIMULATION PROVECT MULTIRATE LOAD CNTRL BY ED FRIEDMAN

DATE 8/20/1984 RUN NUMDER 3 OF 3

CURRENT TIME 0. 1500€+08
STATISTICAL ARRAYS CLEARED AT TIME 0. OOOOE+Q0

##STATISTICS FOR VARIABLES BASED ON OBSERVATION#»

MEAN STANDARD COEFF. OF MINIMUM MAXIMUM NUMBER OF
VAILUE DEVIATION VARIATION VALUE VALUVE OBSERVATIONS
2494E+04 0. J088E+D4 0. 1238E+014 0. 7773E+03 0. 1963E+03 922
1669E+04 0. 1776E+04 0. 10464E+01 0. 7780E+03 0. 1862E+03 922
. 3618E+04 0. 3a31E+04 0. 8930E+00 0. 2058E+04 0. 2316E+03 239
3395E+04 0. 2374E+04 0. 6994E+00 0. 2058E+04 0. 1995E+05 208
1795E+03 0. 1259E+04 0. 7014E+01 0. 0000E+00 Q. 1893€+05 1096
1283CE+04 0. 2823£+04 0. 2201E+01 0. 9500E+01 0. 2946E+05 1096
204BE+04 0. OOO0E+00 0. OO00E+00 0. 204BE+04 Q. 204BE+04 1096
3510€404 0. 31476+04 0. BF9&7E+00 0. 2038E+04 0. 3151E+05 1096
F497E+01 0. 1489E+03 0. 1546BE+02 0. 0000E+00 0. 5324E+04 11066
8907E+03 0. 2190E+04 0. 2458E+01 0. 9500E+0) 0. 183FE+0Y 11066
7680E+03 0. 0000E+00 0. O000E+00 0. 76B0E+03 Q. 7683E+03 10993
1685E+04 0. 2303E+04 0. 1367E+01 0. 7775E+03 0. 2132E+05 11066

*##FILE STATISTICS##

AVERAGE STANDARD MAXIMUM  CURRENT AVERAGE
LENCTH DEVIATION LENGTH LENGTH WAITING TIME

0. 0015 0. 0383 1 o 24. 1015

0. 0003 o. 0182 1 ° 3. 4182

0.0017 0.0410 1 o 121. 4363

0. 0000 0. 0000 o o 0. 0000

0. 5427 0. 9532 8 o 422, 9107

19. 7706 0.5513 47 18 290. 1824

##SERVICE ACTIVITY STATISTICS#s

SERVER AVERACE STANDARD  CURRENT AVERAGE ~ MAXIMUM IDLE  MAXIMUM BUSY

CAPACITY UTILIZATION DEVIATION UTILIZATION BLOCKAGE TIME/SERVERS TIME/SERVERS
1 0. 0000 0. 0000 [] 0. 0000 18002, 0000 0. 0000

##RESOURCE STATISTICS=#

STANDARD MAXIMUM CURRENT

1 PACK1 1 0.1518 0. 3588 1 o
F] PACKZ 1 0. 1022 0. 3030 1 o
17 PACK17 1 0. 0452 0. 2082 1 o
RESOURCE RESOURCE CURRENT AVERAGE MINIMUM MAX IMUM
NUMBER  LABEL AVAILABLE AVAILABLE  AVAILABLE  AVAILABLE
1 PACK1 1 0. 8482 o 1
2 PACK2 1 0. 8978 0 '
17 PACK17 3 0. 9544 0 i

Figure 4-11,

Sample output of the SLAM Summary Report for the

constant data load cese, data load of 15%
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time spent sending good pachets from station 1 = 694374 00 thput = O 0446
time spent sending good packets from station 2 = 703792.06 thput = O, 047
time spent sending good pachets from lt.nllon 17 = 423984, 00 thput = 0, 028
total time spent with good pachkets = 10487233. 00 total throughput = 0, 712
total ® of collisions that occured at station 1 = 14643

total ® of collisions that occured at station 2 = 12683

total ® of collisions that occured at station 17 = 4te

total ® of collisions = 14431 average collisions per millisecond = 0. 9621

on the first atteapt to access net from L = L4

® of packets successtul
on the first attempt to access net from QA = 2

® of packets successful

® of packets successful on the first nt.c.npt to accens net from {7 = 34
total ® of 1st access = 3864 % of ist sccess = 31.771%
® of pachkets successful on the st attempt = G030 percentage = 64, 190
» the 2nd = 1277 = 10. 500
[ the 3rd = 4623 = 35123
[ ] the 4th = 710 = 3 838
[ ] the 3Sth = 372 percentage = 3. 039
#® of pactets succetsful on the &th = 300 percentage = 2, 447
® of packets successful on the 7th - 193 percentage = 1. 4603
® of pacikets successful on the 8¢th - 149 = 1.229
L] the 9th - 139 -« 1.143
L] the 10th « 143 = 1,192
[ ] the 11th = 106 [] - 0.872
® of pachets successful on the 12th attempt =« &3 percentsge = 0.918
# of pachets successful on the 13th asttempt = a3 percent = 0.206
® of packets successful on. the 14th - & percent = 0.049
# of packets successful on the 13th - 4 = 0.000
® of packets successful on the L6th - 1 = 0.008
X successful on ist attempt = 44, 1890
total ® of packets transmitted from station 1 = 922
total ® of packets transmitted from station 2 = 922
total # of packets transmitted 'h-.- station 17 = 208
total @ of packets transmitted = 12162

——=packets discarded due to ¢ sive collisions—

node 1: ® of packety discer =0 percent = 0,00 discavd in a row = O
node 2: ® of packets discarded = O percent = 0, 00 discerded in & row = O
node 17: @ of packets discarded = O ‘pn‘:cnt = 0, 00 discarded in & row = O

total ® of discarded packets = O %X of packets discarded = 0. 0000

10687232
36064

total # of successful hits transmitted =

total & of unsuccessful (discarded) bits =

~==packets discarded due to excess of lifetime—

node 1: ® of packets lost = 13 percentas = 1.63 lost in s row = 2
node 2: & of packets Jost = 3 percentage = 0.33 lost in a row =
node 17: ® of packets lost = O ’.orccntngo = 0.00 lost in a row = O

average percentage of lost packets = 0, 6002 total & of packets lost = 73

=—=—w= total of lost voice pachets
7

number = parcentage = 0. &002
average rate aversge average
totsl node B time range % load colpms data delay, ms
45.9 47. 4 0.0-3. 0 15.0 1. 0384 3. 3609
47. & 47. 6 J.0-46.0 13.0 0. 9840 J. 4823
47.7 47.7 4.0-9.0 15.0 0. 9039 3.3772
47. 9 47.9 9.0-12.0 13.0 0.913%3 3. 1992
47. 2 47.2 12. 0~1%. 0 19.0 1. 06462 3. 8762
overail average rate = 47 34673
overall average rate for node 8 = 47 4620
] e percent load = 13 0000
ove L) Ipms = 0. 9624
sverage datas delay in as = 0, 4992

Figure 4-12.

Sample output of the OTPUT results fer the censtant dats
1o case, data load of 19X,
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For the random data load case the outputs are presented in Figure 4-13
and 4-14. The SLAM Summary Report is the same as the constant data load case,
however, the OTPUT results are slightly different. The only difference is in
the table presented at the bottom of the output. In the random case there is
a different data load for each time range, also the simulation was run lon-
ger. In the constant load case the simulation was run for 15 seconds of real
time and in the random load case the simulation was run for 60 seconds.

This completes the description of the multirate voice coding system. The
choice of coding rates, the feedback algorithm, and the protocol modifications
have been presented. The implementation of the multirate system into the
existing CSMA/CD simulation model has been discussed. And the form of the
output from the simulation has been given. In the following section the

simulation results will be presented.

4.5 Simulation Results

The multirate voice coding system was extensively tested using the simu-
lation model described in the previous sections., The results of the simula-
tion experiments are presented here. The results are presented in two sec-
tions. The first section gives the results of the constant data load case and
the second section gives the results of the random data load case. The con-
stant load case 1is compared to the case where no multirate coding is used.
And the random load case is compared to the constant load case.

There are five data nodes on the network in all the cases. The data
nodes are numbered 3, 5, 9, 14 and 17. The combined load simulated by the
data nodes is either 15% or the load specified in the random case.

The non-multirate case was run so that a comparison can be made with the
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sLAM SUMNARY REPORT

SIMULATION PROJVECT MULTIRATE LOAD CNTRL BY ED FRIEDMAN

DATE 8/20/1984 RUN NUMBER 1 OF 1

CURRENT TIME 0. 5000E+08
STATISTICAL ARRAYS CLEARED AT TIME O. O000E+00

##STATISTICS FOR VARIABLES BASED ON DBSERVATION»#

MEAN STANDARD COEFF. OF MINTIMUM MAXIMUM NUMBER OF
VALUE DEVIATION VARIATION VALUE VALUE OBSERVATIONS
NODE 1§ SYS TIME ©0.3237E+04 0. 3530E+04  O. {090E+01 0. 7760E+03 0. 2871E+05 3076
NODE 2 SYS TIME O0.3759E+04 0. 4191E+04  O. 1115E+01 0. 7760E+03 0. 3350E+05 3073
NODE 17 SYS TIME 0.3572E+04  0.3771E404 O, 10S6E+01 0. 2054E+04 0. 4436E+05 869
QUEUE DLY DATA ©.2832E+03 0. 1939E+04 0. 6B44E+01 0. 0000E+00 0. 4092E+05 4435
ACCSS DLY DATA 0. 1395E+08  0.390BE+04  O. 2802E+01 0. BO0OE+01 0. 4770E+0% 4434
CHNL DELAY DATA O.2049E+04  O.OO0OE+00  O.0OOCOE+00  O.2048E+04 0. 2050E+04 4428
TOTSYS DLY DATA O.3724E+04 0. 4400E+04 0. 1182E+01 0. 2054E404 0. 6411E+05 4434
QUEUE DLY VOICE O0.3599E+02  O.4788E+03 0. 1331E+02 0. 0000E+00 0. 17S0E+05 36503
ACCSS DLY VOICE 0.2490E+04  0.3797E+04 0. 1525E+01 0. BOOOE+01 0. 3174E+05 36902
CHNL DLY VOICE O.7485E+03 0. O0OOE+00  O. OOOOE+00 0. 76B0E+03 0. 7700E+03 36458
TOTSYS DLY VOICE O0.3321E+04 0. 3904E+04 0. 1176E+01  0.7760E+03 0. 3440E+0S 3602
#sFILE STATISTICSw#
FILE  ASSOCIATED  AVERAGE STANDARD MAXIMUM  CURRENT AVERAGE
NUMBER NODE TYPE LENGTH DEVIATION LENGTH LENGTH WAITING TIME
1 AWATT 0. 0014 0.0373 1 o 27. 1175
2 AWAlT 0. 0027 0.0518 i 0 52. 5822
17 AWAIT 0. 0033 0. 0573 1 ° 227 6430
2 QUEVE 0. 0000 0. 0000 ° 0 0. 0000
22 0. 9139 1. 7491 14 1 410. 7906
23 CALENDAR 20.3125 1.2343 71 19 185. 4189
*+SERVICE ACTIVITY STATISTICSw#
ACTIVITY  START NODE  SERVER AVERAGE STANDARD  CURRENT AVERAGE  MAXIMUM IDLE  MAXIMUM BUSY
INDEX LADEL/TYPE  CAPACITY UTILIZATION DEVIATION UTILIZATION  BLOCKAGE  TIME/SERVERS  TIME/SERVERS
° CHNL GUEVE 1 0. 0000 0. 0000 o 0.0000  27800. 0000 0. 0000
#RESOURCE STATISTICS##
RESOURCE RESOURCE CURRENT  AVERACE STANDARD  MAXIMUM CURRENT
NUMBER  LABEL CAPACITY UTILIZATION DEVIATION UTILIZATION  UTILIZATION .
1 PACK1 1 0. 1546 0. 3708 1 °
2 PACK2 1. 0. 1898 0. 3922 1 o
17 PACK17 1 0. 0484 0. 2147 1 o
RESOURCE RESOURCE CURRENT  AVERAGE MINIMUM MAX TMUM
NUMBER  LABEL AVAILABLE AVAILABLE  AVAILABLE  AVAILABLE
1 PACK1 1 0.8354 o 1
2 PACH2 1 0. 8102 0 1
17 PACK17 1 0.9514 ° 1

Figure 4-13. Sample output of the SLAM Summary Report for the vandom

data load case, average data load of 1%%
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time spent sending good packets from station | = 232948€4. 00 thput = O G337
time spent sending good packets from station 2 = 2321782 25 thput = O 01w
time spent sending good packets from station 17 = 1778120. 00 thput = 0 030
total time spent with good packets = 37098252. 00 total thput = O.410
total ® of collisions that occured at station 1 = 11033
total # of collisions that occured at station 2 = 1180/2
total # of collisions that occured at l;ation 17 = 1483
total # of collisions = 133493 average collisions per millisecond = 2 2282
% of packets successful on the first attempt to access net from 1t = 104
# of packets successful on the first attempt to access net from 2 = 281
# of packets successful on the first attempt to access net frum 17 = 293

total # of lst access = 9104 % of st access = 22 0970
# of packets successful on the 1st attempt = 15581 percentage = 37.6943
# of packets successful on the 2nd attempt = 3596 percentage = B, 499
# of packets successful on the 3rd attempt = 3019 percentage = 7.304
# of packets successful on the 4th attempt = 3702 percentage = B. 956
# of packets successful on the 5th attempt = 2353 percentage = 5 692
% of packets successful on the &6th attempt = 1795 percentage = 4.342
# of packets successful on the 7th attempt = 1529 percentage = 3 499
# of packets successful on the Bth attempt = 2024 percentage = 4 B4
# of packets successful on the Fth attempt = 2538 percentage = & 140

‘% of packets successful on the 10th attempt = 2858 percentage = & 914
# of packets successful on the 11th attempt = 1350 percentage = 3. 266
# of packets successful on the 12th attempt = $50 percentage = 1.331
# of packets successful on the 13th attempt = 255 percentage = 0 &17
# of packets successful on the 14th attempt = 102 percentage = O 247
# of packets successful on the 15th attempt = 37 percentage = O 090
# of packets successful on the 16th attempt = 20 percentage = O 048

% successful on 1st attempt = 37.46935
total # of packets transmitted from station 1 = 3076
total # of packets transmitted from station 2 = 3073
total # of packets transmitted from station 17 = a&9
total # of packets transmitted = 41336
~--packets discarded due to excessive collisions———
:::: éf : o: paz:ots discarded = 2 percent = 0 07 discarded in a row = |
H of packets discarded = 3 percent = 0.10 discarded in 3 row = 1
node 17: # of packets discarded = 1 percent = 0. 32 discarded in a row = 1
total ¥ of discarded packaets = 27 % of packets discarded = Q. 0653
total # of successful bits transmitted = 37074012
total # of unsuccessful (discarded) bits = 345600
~~-packets discarded due to excess of lifetime-——

_node 1: # of packets lost = 43 percent = 1, 40 lost in a vrow = 2
node 2: # of packats lost = 49 percent = |, 59 lost in a vow = 2
node 17: # of packets lost = O percent = 0, 00 lost in a row - ©

lost = 413

average percentage of lost packets = 0. 9991 total # of packets

————— total of lost voice packets —=—-=

number = 434 percantage = 1.0499
average rate average average
total node 8 time range % load colpms data delay. ms
47.5 47. 5 0.0-5.0 15.0 0. 9503 3. 5425
48.0 48. 0 5. 0-10. 0 5.0 0. 2388 2. 6706
45. 0 456. 0 10. 0-15. 0 20.0 1. 34650 4. 3564
43. 2 43.3 15.0-20.0 15.0 2.1538 4. 3103
42. 6 43. 1 20.0-25. 0 5.0 2. 3260 d.1127
41. 1 41.3 25.0-30.0 10.0 2. 63680 2. 9813
36.3 36.3 30.0-35.0 25.0 3. 2163 3. 29688
38. 2 37.9 35.0-40.0 5.0 2.7708 2. 9585
37.8 37.3 40. 0-45. 0 15.0 2. 9473 3. 0893
37.8 37. 4 45. 0~-50. 0 20.0 2. 9012 3.7115
39.7 40.0 $0.0-55. 0 23.0 2. 6492 4.3714
40. 4 40. 3 5%5. 0-40.0 20.0 2.5742 4. 0168

overall average rate = 41. 5459

overall average rate for node 8@ = 42. 0598
averags percent load = 15 0000

overall average colpms = 2 2274

average data delay in ms = 3 5350

Figure 4-14. Sample output of the OTPUT results for the random
data load case, average data load of 315%
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multirate case. In the non-multirate case the voice coding rate is 48 kbps

for all the voice nodes, and the data load is 15%.

4.,5.1 Constant Data Load

In this section, the results of the constant data lcad simulation runs
will be explained. Each result is presented as a figure showing thé perfor-
mance indicator versus the number of simulated conversations. Each voice node
on the network represents a conversation.

The percentage of lost voice packets is an important performance indica-
tor for integrated voice/data networks. It gives an indication of the feasi-
bility in using packet voice on a particular network. It has been shown that
the voice quality degrades rapidly when the percentage of lost voice packets
exceeds the 2% level [15]. In Figure 4-15 the percentage of lost voice pac-
kets versus the number of simulated conversations is shown for the multirate
coding case and the non-multirate coding case. When the traffic on the net-
work increases, the voice coding rate will be decreased. A decrease in the
voice coding will cause less traffic on the network, and therefore reduces the
percentage of lost voice packets at high loads.

The result shows a substantial increase in the number of simulated con-
versations over the case where no multirate voice coding is used. The 2%
level of lost voice packets when no multirate coding is used is at approxi-
mately 12 conversations, and that with multirate coding is approximately 22
conversations. A comparison of the constant coding rate case to the results
given in [12, 13, 14] shows good agreement.

The curve of the lost packet percentage for the multirate case is not
smooth due to the coding rate changes. When the number of simulated conversa-

tions increases, the percentage of lost voice packets is expected to in-
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crease. However, the percentage of lost packets drops from 1.9 when 15 con-
versations are simulated to 1.3 when 20 conversations are simulated. This
occurs because the coding rate decreases when the number of conversations
increases, which causes fewer voice packets to access the network. Thereby,
decreasing the percentage of lost packets, allowing a greater number of con-
versations to take place.

The voice delay and the collisions per millisecond are shown in Figure 4-
16. The figure shows that the collisions per millisecond increases with the
voice packet delay, which verifies that the collisions per millisecond is
giving a good indication of the network traffic. The voice delay decreases
from 9.5 milliseconds when 25 conversations are simulated, to 8.5 milliseconds
when 30 conversations are simulated. The delay should increase as the number
of conversations is increased, however, this figure does not show how many
packets were lost. When a packet is lost the delay statistics are not col-
lected for that particular packet. So, at the higher loads more packets are
lost and the packets that are discarded are not included in the delay statis-
tics. The voice packet delay is again shown in Figure 4-17, where a compari-
son is made to the non-multirate case. From Figure 4-17 it appears that the
voice delay is greater for the multirate case, however, this graph is deceiv-
ing since the delay statistics are not collected for lost voice packets. The
voice delay curves show the expected delay for voice packets that have been
successfully transmitted over the network.

The throughput is another important network performance indicator. The
throughput gives an indication of how much of the network capacity is being
utilized. The throughput is calculated as the time the network was carrying
packets successfully divided by the total time that was simulated. A compari-

son of the throughput for the non-multirate case and the multirate case is
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shown in Figure 4-18. When the load is high, the multirate case gives a lower
total throughput than the non-multirate case. This is because when the load
is high the voice coding rate is decreased which causes less voice packets to
attempt transmission.

The segmental signal-to-noise ratio gives an indication of the voice
quality [18]. The segmental signal-to-noise for the non-multirate case is 30
dsB. The voice quality, and therefore the segmental signal-to-noise should
drop as the voice coding rate decreases. The voice coding rate should drop
down to the lowest rate as the number of conversations increases. The voice
coding rate and segmental signal-to-noise are shown in Figure 4-19, where the
expected result was obtained.

The data packet delay is another performance indicator. The data delay
should remain as low as possible from the point of view of a network user
[19]. A comparison of the data packet delay for the constant coding rate case
and the multirate coding case is shown in Figure 4-20. BAs seen in Figure 4-
20, the data packet delay is decreased when the multirate voice coding tech-

niques are employed.

4.5.2 Random Data Load Case

In this section the results of simulating data loads that vary over time
will be presented. For this experiment the average data load was 15%. The
load was changed every five seconds. The sequence of data loads is shown in
the table at the bottom of Figure 4-14. The results for this case should be
approximately the same as the constant load case. In the figures the results
for the constant load case and the random load case are presented so that a

comparison can be made. The results are given in Figures 4-21 through 4-27,
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The figures show that the random load case closely resembles the constant
load case. The random load case is simulating bursty data traffic. Bursty
traffic is expected on data networks. The results show that the system holds

up under bursty traffic.

4.6 System Dynamics

In the previous section the simulation results were presented. Those
results gave the system performance as an average. The time response of the
system is useful for verifying that the feedback algorithm is operating prop-
erly. In this section, the time response of the system will be given. That
is, the voice coding rate and the number of collisions per millisecond will be
presented as a function of time. The time response of the system is presented
as a series of figures, the voice coding rate versus time and the collisions
per millisecond versus time are presented for several system configurations.
All the results presented pertain to the multirate voice coding case, and have
been chosen from the constant data load case and the random data load case.

The random data load case shows how the feedback system adapts to changes
in the network load. That is, when the data load changes the voice coding
rate is seen to change according to the amount of data traffic. The random
data load case is presented for 12 voice conversations.

For the constant data load case the time response is presented for an
increasing number of simulated conversations, The constant data load case
shows that the system adapts to increasing voice traffic. The voice coding
rate is seen to decrease when the number of simulated conversations is in-
creased,

In Figure 4-28 the voice coding rate is shown as a function of time, the

data load is a constant 15% and 12 conversations are simulated. The average
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Figure 4-28. Voice coding rate versus time, for 12 simulated
conversations and a constant data load of 15%.
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Figure 4-29. Collisions per millisecond versus time, for 12

simulated conversations and a constant data load
of 15%.
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voice coding rate over this period is 47.5 kbps. The number of collisions per
millisecond as a function of time is shown in Figure 4-29, an average of
approximately one collision occured every millisecond.

The next two figures, Fiqure 4-30 and Figure 4-31, show the voice coding
rate and collisions per millisecond when the number of conversations is in-
creased to 15. The data load here is also a constant 15%. The number of
collisions per millisecond has increased, the average in Figqure 4-31 is 2.7.
An average voice coding rate of 39.0 kbps is shown in Figure 4-30. The voice
coding rate is seen to vary throughout this time range.

In Figure 4-32 and Figqure 4-33, the coding rate and collisions per milli-
second are shown, respectively. For these fiqures the data load is a constant
15% and there are 20 conversations being simulated. It is seen that the
coding rate falls to the lower values and remains at the lower coding rates.
The corresponding collisions per millisecond remain high. The average coding
rate is 30.4, and there is an average of 3,9 for the collisions per milli-
second.,

The final constant data load case is shown in Figure 4-34 and Figure 4-
35, where 25 conversations are simulated. This case shows that at high loads
the voice coding rate remains at the lowest value. The average coding rate
here is 25.5 kbps. The corresponding collisions per millisecond are higher
than the previous cases, an average of 5.8 is shown.

The remaining portion of this section is concerned with the random data
load case. The figures presented show the voice coding rate and collisions
per millisecond versus time. The data load changes at 5000 milliseconds in
each of the figures. It can be seen from these figures that the feedback
algorithm adapts to the changing load conditions. The results are given for

the case where 12 conversations are simulated. These results are presented in

Figure 4-36 through Figure 4-43.
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Figure 4-30. Voice coding rate versus time, for 15 simulated
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Figure 4-31. Collisions per millisecond versus time, for 15
simulated. conversations and a constant data

load of 15%.
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Figure 4-32. vVoice coding rate versus time, for 20 simulated
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Figure 4-33. Collisions per millisecond versus time, .- 20
simulated conversations and a constant dara load
of 15%.
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Figure 4-36. Voice coding rate versus time, for 12 simulated con-
versations and a data load that changes from 5% to
20% at 5000 milliseconds.
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Figure 4-37. Collisions per millisecond versus time, for 12
simulated conversations and a data load that changes
from 5% to 20% at 5000 milliscconds.
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Figure 4-39.
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Figure 4-42. Voice coding rate versus time, for 12 simulated
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In this section the time response of the system was presented, This
information is useful for verifying that the feedback algorithm is operating
properly. It was shown that the system adapts to the changing load condi-
tions.

This chapter presented the multirate voice coding algorithm. The study
was done as a proof of concept. The results show that the use of multirate
voice coding can improve the network performance by allowing a greater number
of conversations. The multirate techniques increase the complexity of the
network. The added complexity comes from the need to measure the traffic on
the network and the multirate voice coder,

The choice of voice coding rates was limited to the constraints of the
particular coder that was implemented at the Telecommunications and Informa-
tion Sciences Laboratory. It has been suggested that the voice coding rates
should be chosen in increments no larger than 2 kbps [20]. However, the goal
here was to prove, using a simplified system, that the multirate techniques
can improve the performance of CSMA/CD networks that have a combined loading

of voice and data.
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5.0 CONCLUSION

The CSMA/CD simulation model, documented in Chapter 3, accurately pre-
dicts the performance of a real system. The simulation model was developed so
that studies of Ethernet-like networks could be performed. The specific Local
Area Network (LAN) configuration studied has a combined loading of voice and
data. The objective of the study was to determine the feasibility in using a
multirate voice coding scheme to control the network load.

The multirate voice coding system performs well under varying load condi-
tions. A comparison was made between the multirate voice coding system and a
voice/data network that uses a constant voice coding rate. The results of
that comparison show that the multirate system gives a superior performance.
Specifically, an increase of ten conversations is achieved when the variable
rate coding scheme is applied to a system that consists of a 1lMbps line and a
constant data load of 15%.

In addition, the constant data load and random data load cases were
compared. This comparison shows that the constant load case closely approxi-
mates the random load case. Of more significance, the random load case simu-
lates the bursty traffic associated with data. Therefore, the multirate

3

coding techniques perform well under bursty traffic.
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APPENDIX A LISTING OF THE CSMA/CD SIMULATION MODEL

Appendix A. 1

Listing of the Network Model

GEN, TISL, CSMA CD, 8/20/84, 1, NO, NG;
LLIMITS, 24, 17, 200;

STAT, 1, NODE
STAT. 2, NODE
STAT, 3. NODE
STAT.: 4, NODE
STAT., 5, NODE
STAT. &, NODE
STAT.: 7, NODE
STAT. 8, NODE
STAT, 2, NODE
STAT, 10, NODE
STAT., 11, NODE
STAT., 12, NODE
STAT, 13, NODE
STAT, 14, NODE
STAT, 15, NODE

CSONOCURDPDUWUN»

8SYS. TIME
8YS. TIME
SYS. TIME
8YS. TIME
8YS. TIME
SYS. TIME
SYS. TIME
8SYS. TIME
8YS. TIME
10 SYS TIME
11 SYS TIME
12 SY8 TIME
13 8YS TIME
14 SYS TIME
15 SYS TIME

STAT: 14, QUEUEING DELAY
STAT, 17, ACCESS DELAY
STAT, 18, CHANNEL DELAY
STAT, 19, TOTAL SYS DELAY

’
NETWORK;

atrib
atrib
atrib
atrib

atrib

atrib
atrib

atrib

W W W e Wme W e W s Wi s s W Wl me W W

atrib

(1)
(2)
(3)
(4)
(3)

(&)
(7)

a8

(?)

VARIABLE DEFINITIONS:

packet creation time

node identification

praopagation left marker, if left prop is

finished then atrib(3)=0

propagation right marker, if right prop is

finished then atrib(4)=0

if atrib(5)=0 then event being scheduled is propagation,
if atrib(35)=1 then event being scheduled is transmission
counter for the number of attempts to transmit

end of propagation left mavrker, if atrib(7)=0

then finished prop left

end of propagation right marker, if atrib(8)=0

then finished prop right

packet length in microseconds
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Appendix A.1 Continued

W W W We We W W W W s W Wwe W e W W W s e e e We Wi Me We Wl Wi We e

e W W W we e W e

atrib(10)= atrib(9)-slttim = amount of time left after the
collision discrimination period

atrib(11)= number of bits per packet

atrib(12)= marks the time transmission is attempted, gets
reset each time a retransmission is attempted

atrib(13)= while packet is in the AWAIT NODE atrib(13)=0, set
to 1 when packet leaves the queuve, used to collect
statistics on the amount of time a packet is queued,
tqueud= atrib(14) minus atrib(1)if atrib(13)=0

atrib(14)= marks the time when a packet leaves the node queve
(the AWAIT), used to collect statistics on the time
required to access the network,
taccss=atrib(12)—-atrib(14)

atrib(153)= not used

atrib(16)= not used

atrib(17)= first access attribute, if the packet is trying to
transmit for the first time then atrib(17) is set
to 1 from O, on subsequent attempts to transmit
atrib(17) is incremented

XX(25) = THE SIMULATION TIME (TTFIN)
files 1—-15 reserved for the AWAIT NODE at each station

files 16-21 not used
file 22 channel QUEUE NODE

file 23 not used
file 24 defer file
file 29 event calendar

RESOURCE/PACK1, 1 /PACK2, 2/PACK3, 3/PACK4, 4/PACKS, S/PACKL, &/
PACK7, 7/PACK8, B/PACK?, 9/PACK10, 10/PACK11, 11/
PACK12, 12/PACK13, 13/PACK14, 14/PACK15, 15;

MODEL. OF THE NUMBER OF STATIONS ON THE ETHER

CREATE, EXPON(13931. 97265625), ., 1i create packets at node 1
ASSIGN, ATRIB(2)=1. O,

ATRIB(9)=1393. 19724654625,

ATRIB(11)=4094.0,1; assign attributes

AWAIT (1), PACK1; packets wait for previous packet to finish
ACT, s » CHNL; immediate branch to the channel
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Appendix A.1 Continued

.

——— e s P S S . o St et St S0480 S e B S S U Stk S, S PR FAATD A AmidS S0008 SR (e Gy s S

CREATE., EXPON(13931. 972465625), 1500, 1;

ASSIGN, ATRIB(2)=2. O,
ATRIB(9)=1393. 1972565425,
ATRIB(11)=4096. 0, 1;

AWAIT(2), PACKZ;

ACT, , » CHNL,;

CREATE., EXPON(13%931. 972465625), 3000,

ASSIGN, ATRIB(2)=3. O,
ATRIB(9)=1393. 1972465425,
ATRIB(11)=40%6.0, 1;

AWAIT(3), PACK3;

ACT, » » CHNL;

1;

- e o s — trr Sai -t ——

——— .t 4300 St S S . et S S A S Y s e Tt S s

CREATE, EXPON(13931. 97265625), 4500,

ASSIGN, ATRIB(2)=4. 0,
ATRIB(?)=13%93. 197265425,
ATRIB(11)=4096.0, 1;

AWALIT(4), PACKA;

ACT, » » CHNL;

i;

CREATE, EXPON(13931. 272&5625), 4000,

ASSIGN, ATRIB(2)=5. 0,
ATRIB(9)=13%93. 1972465425,
ATRIB(11)=4094. 0, 1;

AWAIT(S), PACKS;

ACT, » » CHNL;

1;

CREATE, EXPON(13931. 972465625, 7500,

ASSIGN, ATRIB(2)=6. 0,
ATRIB(9)=1393. 1972465425,
ATRIB(11)=40%964. 0, 1;

AWAIT(6), PACKS;

ACT, , ,» CHNL;

1;
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Appendix A.1  Continued

CREATE, EXPON(13931. 97265425), 7000, 1;
ASSIGN, ATRIB(2)=7. 0,
ATRIB(9)=1393. 197265625,
ATRIB(11)=4094. O, 1;
AWAIT(7)., PACK7;
ACT. ., » CHNL;

CREATE, EXPON(13931. 972465425), 11000, 1;
ASSIGN, ATRIB(2)=8. 0O,
ATRIB(2)=1393. 197245625,
ATRIB(11)=4094. 0, 1;
AWAIT(8), PACKS;
ACT, , , CHNL,;

CREATE: EXPON(13231. 97265425), 13000, 1;
ASSIGN, ATRIB(2)=9. 0,
ATRIB(9)=1393. 1972465625,
ATRIB(11)=40%94. 0, 1;
AWAIT (), PACKY;
ACT, , » CHNL;

CREATE, EXPON(13931. 97265625), 15000, 1;
ASSIGN, ATRIB(2)=10. O,
ATRIB(92)=1393. 197265625,
ATRIB(11)=4096. 0, 1;
AWAIT(10), PACK1Q;
ACT, . » CHNL;

CREATE., EXPON(13931. 97265625), 17000, 1;
ASSIGN, ATRIB(2)=11. 0,
ATRIB(9)=1393. 197265425,
ATRIB(11)=40%96. 0, 1i
AWAIT(11), PACK11,;
ACT, , » CHNL;

W W W e e e e WY W W e s e e W G e e e Wi W %L We e Se s Wr Wi We Me e s e W Wi We e W W Ws We We Wy e W e
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Appendix A.1 Continved -~

CREATE, EXPON(13931. 9272&45625), 20000, 1;
ASSIGN, ATRIB(2)=12. O,
ATRIB(92)=1393. 1972654625,
ATRIB(11)=40%96. 0, 1;
AWAIT(12), PACK12;
ACT, , , CHNL;

W W e W G e Wi W e e M e Wy e W We W e

-

CREATE;: EXPON(13931. 97265625), 23000, 1;
ASSIGN, ATRIB(2)=13. 0,
ATRIB(2)=1393. 197265625,
ATRIB(11)=4096. 0, 1;
AWAIT(13), PACK13;
ACT, , » CHNL;

CREATE, EXPON(13931. 9724654625), 26000, 1;
ASSIGN, ATRIB(2)=14.0,
ATRIB(?)=1393. 1972654625,
ATRIB(11)=4094. 0, 1;
AWAIT(14), PACK14;
ACT., , » CHNL;

- - ——— v L X Ry ——

CREATE.: EXPON(13931. 97265625), 29000, 1;
ASSIGN, ATRIB(2)=15. 0,
ATRIB(?)=1393. 1972465425,
ATRIB(11)=40%4. 0, 1;
AWAIT(15), PACK1S;
ACT, , » CHNL;

- 0 We We Wi We s W We s W s We We Wy W @ Wr We W W W e W

- w W s

S e ot e oorow et s e

QUEUE(22); dump entities into queve
ACT; immediate branch to channel model
EVENT, 1; gateway to discrete event program

ASSIGN, XX(25)=10000000; set xx(25) equal to ttfin
END:;

INIT, 0, 10000000;

FIN;
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Appendix A.2 Listing of the Discrete Event Model

L o b a2 20 B o B L n e s

nNNnNnAannnN

subroutine event(i)

short explanation:

g » W N

m N >

The event subroutine is required by SLAM in all discrete event
models the user will schedule an event to occur and the event
subroutine calls the particular event when the time scheduled is
reached. '

go to (1,2,3,4,5,6,7,8),1

ctall sense
return

call transmit
return

call leftprop
return

call rigtprop
return

call success
return

call endtrans
return

call ltfinprop
return

call rtfinprop
return
end

o e s T e B o e i o i e o R O S o S e

nntnnnnMhnan®

subroutine sense

short explanation:

The sense event is scheduled from the calc_wait_backoff and
exitdefer subroutines. In sense statistic collection is done, and
statistic collection attributes are set. Then sense looks at the
network status array to see if the channel is idle, if the channel
is idle a transmit event is scheduled, if the channel is not idle
the packet gets put in the defer file.

include ‘params. dat”’
integer inode, i
real tqueud
atrib(17)=atrib(17)+1
increment the first access atrib
if ( atrib(13) .eq. O ) then
the packet has just left the node queue, so collect
statistics and set statistic collection attributes
tqueud=tnow—atrib(1)
call colct(tqueud, 16)
atrib(13)=1
atrib(14)=tnow
.end if
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Appendix A.2 Continued

d write(nprnt, 1776)(stadly(i), i=1,maxsta—1)
1776 format(’ station delay . sense. ‘+10£5. 1)
inode = atrib(2)

€ set inode to the node that generated the packet
atrib(10) = atrib(9) —-slttim
c set a(10) to the amount of time left after the collision
c discrimination period
if ( ntstus(inode) .eq. O ) then
c the channel is sensed idle
d write(nprnt, 20)inode
20 format(’ tx. just occured in subr. sense ... ineode = 4,
1 i%)
atrib(12)=tnow + waitim
c set a(12) to the current time plus the interframe
c spacing
d write(nprnt, 2525) tnow
25295 format(’ time now = /, 9.1, a(12) is set to tnowtwaitim’)
atrib(3) =1
c set a(3) to indicate a transmission event
nodest(inode) = itrans
c set the node state to transmitting
call schdl{(2,waitim, atrib)
c schedule a transmit to be called after waiting the
c interframe spacing
else
c the channel is sensed busy
d write(nprnt,; 1905) tnow
1905 format(’ time is now = ‘, £2. 1)
d write(nprnt, 30)inode
30 format(’ defer entry packet in subr. sense ...
1 inode = ‘,1i95)
atrib(d) =1
C set a(5) to a transmit event
nodest(inode) = idefer
c set the node state to defering
call filem( (nclnr-1) ,atrib)
c file the packet in the defer file, the packet will
c return to sense when the node state returns to idle
end if
Teturn
end

o o a0 R L a0 a0 1 2 S S S
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Appendix A.2 Continued

nnNnAannNnAafnnnmnnNnnnN

short

subroutine transmit

explanation:

The transmit event is scheduled from the sense event. The network
status array is incremented, and the propagations to the nodes next
to the origin node are scheduled, if the origin node is node at the
end of the line. A check is made to see if a collision has occured,
and the end of the collision discrimination period is scheduled.

The success event is scheduled to be called after the collision
discr. periad. Also the leftprop and rigtprop events are scheduled,
the subroutines chnlecho and collision are called.

include ’‘params. dat’
integer inode
inode = atrib(2)
set inode to the node that generated the packet
ntstus(inode) = ntstus(inaode) + 1
increment the network status, so that if the node status
was idle it is now busy
call chnlecho(’ bgn transmit ‘,nodest.ntstus
ymaxsta, tnow, inode, inode)
if ( inode .ne. 1 ) then
we are not at the beginning of the line and should schedule
a propagation 1 node to the left
atrib(3) = inode - 1
move the left propagtion marker one node to the left
atrib(5) = 0
set a(5) to indicate a propagation event
call schdl1(3, stadly(inode—1),atrib)
schedule the packet to arrive at the next node
to the left in the amount of time specified in
the station delay array

else
then we are at the beginning of the line
atrib(3) = 0
set the left propagation marker to indicate that
the packet has propagated all the way to the left
end if
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Appendix A.2 Continuved

if ( inode .ne. maxsta ) then

c we are not at the end of the line and should schedule a
c propagation 1 node to the right
atrib(4) = inode + 1
c set the right propagation marker one node
C to the right
atrib(3) = 0O
c set a(3) to indicate a propagation event
call schdl(4,stadly(inode), atrib)
c schedule the packet to arrive at the next node to
c the right in the amount of time specified in the
c station delay array
else
c we are at the end of the line
atrib(4) = 0
c set the right propagtion marker to indicate
c that the packet has finished propagating right
end if
if ( ntstus(inode) .ge. 2 ) then
c a collision has occured during the interframe spacing
nodest(inode)=intrmyv
c set the node state to indicate that a collision has
c occured during the interframe spacing
d write(nprnt, 2001)
2001 format(’ collision during interframe spacing’)
call chnlecho(’ coll. in discr. ‘,nodest,ntstus
1 ;maxsta, tnow, inode, inode)
call collision
c call the collision subroutine so that backoff can
N be determined ( amoung other things )}
else if ( nodest(inode) .eq. itrans ) then
C the node is in the transmit state and we must schedule the
c end of the collision discrimination period
atrib(5) = 1 .
c set a(3) to indicate a transmission event
d write(nprnt. 10)inode
10 format(’ enter collision discr. period ... inode = ’,1i3)
nodest(inode) = icolpr
c set the node state to indicate that the node is
c in the collision discrimination period

call schdl(5,slttim,atrib)

c schedule success to be called after the slot
c time ( collision discrimination periad ) has
c elapsed, since all the other nodes will allow
c inode to complete it’s transmission now
else
c if the node state was not set to transmit or the
c ntstus was not greater than or equal to 2, then
c this event should not have been called
d write(nprnt, 20)
20 . format(’ error in node state calling event(2) transmit’)
end if
return
end
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subroutine leftprop

c
¢ short explanation:
c Scheduled fraom the transmit event and itself. This event
c simulates the propagation of the leading edge of the packet
c towards the left of the origin node. Leftprop only schedules
c itself to occur and not other events. It calls the chnlecho
c and collision subroutines.
c
include ‘params. dat’
integer poslft, inode
real savO
inode = atrib(2)
c set inode to the node that generated the packet
poslft = atrib(3)
c set poslft to the propagate left marker
ntstus(poslft) = nitstus(poslft) + 1
c increment the network status of the node that the
c leading edge of the packet has arrived to
call chnlecho(’ bgn left prop’,nodest,ntstus
1 smaxsta, tnow, inade, poslft)
if ((ntstus(poslft) .eq. 2). and. (nodest(poslft) .eq. icolpr)) then
c a collision has occured at the poslft node
savO = atrib(2)
c save the origin node
atrib(2) = poslft
c set the node marker to the poslft node
call collision
C call the collision subroutine
atrib(2) = sav0
c return to the origin node
end if
atrib(3) = atrib(3) - 1
c set the propagate left marker to the next node to the left
poslft = atrib(3)
c set the poslft pointer to the next node that must be
c propagated to
if ( posltt .ne. O ) then
c we have not finished propagating to the left and must
c schedule the packet to arrive to the next node
atrib(3) = 0
c set a(5) to indicate a propagation event
ctall schdl(3,stadly(poslft),atrib)
c schedule the packet to arrive to the next node
c in the amount of time specified in the stadly
c array, and execute the leftprop event again
else
€ we have finished propagating to the left
atrib(3) = 0
c set the left prop marker to indicated
c . we are finished
end if
return
end
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subroutine rigtprop

c
¢ short explanation:
c The rigtprop event is scheduled from the transmit event and
c itseléf. It simulates the propagation of the leading edge oaof
c the packet down the line towards the right of the origin node.
c The rigtprop event only schedules itself, and calls the chnlecho
c and collision subroutines.
c
include ‘params. dat”
integer posrgt. inode
real sav0O
inode = atrib(2)
c set inode to the node that generated the packet
posrgt = atrib(4)
c set posrgt to the propagate left marker
ntstus(posrgt) = ntstus(posrgt) + 1
c increment the network status of the node that the
c leading edge of the packet has arrived to
call chnlecho(’ bgn right prop’.nodest, ntstus
1 smaxsta, tnow, inode, posrgt)
if ((ntstus(posrgt) .eq. 2). and. (nodest{posrgt) .eq. icolpr)) then
c a collision has occured at the posrgt node
} sav0 = atrib(2)
c save the origin node
atrib(2) = posrgt
€ set the node marker to the posrgt node
call collision
c call the collision subroutine
atrib(2) = savO
c return to the origin node
end if
atrib(4) = atrib(4) + |
c set the propagate right marker to the next node to the right
if ( posrgt .ne. maxsta ) then
c we have not finished propagating to the right and must
c schedule the packet to arrive to the next node
atrib(5) = 0
c set a(5) to indicate a propagation event
call schdl(4,stadly(posrgt),atrib)
c schedule the packet to arrive to the next node
c in the amount of time specified int the stadly
c array, and execute the rigtprop event again
else
€ we have finished propagating to the right
atrib(4) = 0O
c set the right prop marker to indicated
c we are finished
end if
return
end
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n

short

10

20

7171

subroutine success

explanation:

The success event is scheduled from the transmit event to be
called after the packet has successfully made it through the
collision discrimination period. In success the endtrans event
is scheduled to occur after the rest of the packet has been
transmitted, and the node state is set to terminate the packet.

include ‘params. dat’
integer inode
inode = atrib(2)
set inode to the node that generated the packet
atrib(3) =1
set a(5) to indicate a transmission event
write(nprnt, 10)tnow
format(’ time is now = ‘' £9. 1)
write(nprnt, 20)inode
format(’ node ’,i5, ‘'’ controls the channel’)
write(nprnt, 7171) atrib(1)
format(‘’ atrib(l)=mark time=packet creation time= ’, £6. 1)
nodest(inode) = iterm
set the node state to terminate the packet
call schdl(é6,atrib{(10);atrib)
schedule the endtrans event to occur once the packet has
finished transmitting the rest of the packet ( the amount
left after the collision discrimination period)
return
end
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short

subroutine endtrans

explanation:

The endtrans event is scheduled from the success event. The
network status of the origin node is decremented and the initial
propagation of the ending edge of the packet is scheduled to occur

if the origin node is node at either end of the line. The 1tfinprop

and rtfinprop events are scheduled, and the chnlecho and freersc
subroutines are called. )

include ‘params. dat’
integer inode
inode = atrib(2)

set inode to the node that generated the packet
ntstus(inode) = ntstus(inode) - 1

decrement the network status of the origin node
call chnlecho(’ end transmit ‘,nodest,ntstus

smaxsta, tnow, inode, inode)
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if ( inaode .ne. 1 ) then

we are not at the beginning of the line and should schedule

the ending edge to propagate 1 node to the left

atrib(7) = inode — 1
move the end of prop left marker one node
to the left

atrib(s5) = 0O
set a(35) to indicate a propagation event

call schdl(7,stadly(inode—1), atrib)
schedule the ending edge of the packet to arrive at
the next node to the left in the amount of time
specified in the stadly array., and execute the
ltfinprop event

else
we have finished propagating the ending edge to the left
atrib(7) = 0
set the end of prop left marker to indicate we
have finished
end if

if ( inaode .ne. maxsta ) then
we have not finished sending the ending edge of the
packet to the right of the origin node and must schedule
the ending edge to arrive to the next node to the right
atrib(8) = inode + 1
set the end prop right marker to the next node
to the right
atrib(5) = 0O
set a(5) to indicate a propagation event
call schdl(8, stadly(inode), atrib)
schedule the ending edge of the packet to arrive
to the next node in the amount of time specified
by the stadly array, and execute the rtfinprop event

else
we have finished the ending edge propagation to the right
atrib(8) =0
set the end right prop marker to indicate we are
finished
end if
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]

10

15

20

25

30

if ( nodest(inode) .eq. iterm ) then
the packet has finished transmission
call freersc
call the freersc subroutine so that statistics can
be collected and the next packet can begin the
process
else if ( nodest(inode) .eq. idefer ) then
the node has a packet ready to begin the process
write(nprnt, 10)inode

format(’ node is still jamming ... inode = ‘,1i35)
write(nprnt, 15)
format(’ packet is defering from busy channel !!! )

else if ( nodest(inode) .eq. ijamng ) then
Jam signal is over
nodest(inode) = iidle
set the node state to idle
write(nprnt, 20)inode
format(’ node jJjust finished jamming ... inode = “/,1i3)
write(nprnt,25)
format(’ packet will return via backoff

node is idle !'!! )
else
the node is not in the terminate, defer, or jamming state
and endtrans should not have been called
write(nprnt, 30) '
format(’ error in node state calling event(é) endtrans”’)
end if
Teturn
end
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short

subroutine 1tfinprop

explanation:

The ltfinprop event is scheduled from the endtrans event and
itself. In ltfinprop the ending edge of the packet traveling
down the line to the left of the origin node, is simulated.
The chnlecho and exitdefer subroutines are called.

include ‘params. dat’
integer poslft, inode
Teal savO
inode = atrib(2)
set inode to the node that generated the packet
poslft = atrib(7)
set poslft to the end prop left marker
ntstus(poslft) = ntstus(posléft) - 1
decrement the network status
call chnlecho(’ end left prop’:nodest,ntstus
;maxsta, tnow, inode, poslft)
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if ((ntstus(poslft) .eq. O0). and. (nodest(poslft) .eq. idefer)) then
the poslft node has a packet ready to send and has sensed
the channel idle
sav0 = atrib(2)
save the origin node indicator
atrib(2) = poslft
set the node marker to the poslft node
call exitdefer
remove the poslft node’s packet from the defer file
atrib(2) = sav0
return to the origin node
end if
atrib(7) = atrib(7) - 1
decrement the end of prop left marker to point to the
next node to the left
poslft = atrib(7)
set poslft to the next node to be propagated to
if ( poslft .ne. O ) then
we have not finished prop the ending edge of the packet
to the left and must schedule the ending edge to arrive
to the next node
atrib(d) = 0
set a(5) to indicate a propagation event
call schdl(7,stadly(poaslft),atrib)
schedule the ending edge of the packet to arrive to
the next node in the amount of time specified in the
stadly array, and begin ltfinprop again

else
we have finished propagating the ending edge
of the packet to
the left
atrib(7) = 0
set the end of prop to the left marker to indicate
we have finished
end if
return
end
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subroutine rtfinprop

short explanation:

The rtfinprop event is scheduled from the endtrans event and

itself. In rtfinprop the ending edge of the packet traveling
down the line to the right of the origin node, is simulated.

The chnlecho and exitdefer subroutines are called.

include ‘params. dat’

integer posrgt. inode
real sav0
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inode = atrib(2)

c set inode to the node that generated the packet
posrgt = atrib(8)
c set posrgt to the end prop right marker
ntstus(posrgt) = ntstus(posrgt) - 1
c decrement the network status array
call chnlecho(’ end right prop’,nodest.ntstus
1 smaxsta, tnow, inode, posrgt)
if ((ntstus(posrgt) .eq. 0). and. (nodest{posrgt) .eq. idefer)) then
c the posrgt node has a packet ready to send and has
C sensed the channel idle ( ntstus(posrgt)=0 )
savO0 = atrib(2)
c save the origin node
atrib(2) = posrgt
c set a(2) to the posrgt node
call exitdefer
c remove the posrgt node’s packet from the defer file
atrib(2) = savO
c return to the origin node
end if
atrib(8) = atrib(8) + 1
c increment the end prop Plght marker to point to
t the next node
if ( posrgt .ne. maxsta ) then
c we have not finished propagating the ending edge of the
c packet to the right and must schedule the ending edge
c to arrive to the next node
atrib(5) = 0
c set a(b) to indicate a prop event
call schdl(8,stadly(posrgt),atrib)
c schedule the ending edge of the packet to arrive to
c the next node in the amount of time specified in the
c stadly array, and begin rtfinprop again
else
€ we have finished propagating the ending edge of the packet
C to the right
atrib(8) = 0O
c set the end of prop to the r1ght marker to indicate -
c that we have finished
end if
return
end
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subroutine collision

short explanation:
The collision subroutine is called by the transmit., leftprop.
after rigtprop events. The endtrans event is scheduled to be
called after the jam signal is finished being sent. The search
and calc_wait_backoff subroutines are called.

AN AN NN

include ‘params. dat’
real savl, sav2
integer inode, i

d write(nprnt, 8)

8 format(’ collsion subr. entry point ... called by 1lt/rt prop’)

inode = atrib(2)

c set inode to the node that generated the packet
savl atrib(3)

€ save the prop left marker
sava atrib(4)

€ save the prop right marker
icoll(inode) = icoll(inode) + 1

c increment the number of collisions

d write(nprnt, 1807)(icoll(i), i=1,maxsta)

1807 format(’ # of collisions per station (coll. rout.) = *,10i3)

if ( nodest(inode) .ne. intrmv ) then

c the collision did not occur in the interframe spacing
call search
c find the success event that was due to occur
c and remove it from the event calendar
end if
atrib(3) = savl
c return the prop left marker
atrib(4) = sav2
c return the prop right marker
atrib(&) = atrib(&) + 1
c increment the number of attempts for this packet
d write(nprnt, 1205) atrib(s)
1905 format(‘’ # of collisions for specific packet = 4, 4. 1)
d write(nprnt, 5555) inode
5555 format(’ nade = /,i3)
nodest(inode) = ijamng
C set node state to jamming
atrib(35) = 0
c set a(5) to indicate a propagation event
call schdlé,r jmtim, atrib)
c schedule the end of the jam signal
atrib(3) =1
C set a(9) to indicate a transmission event
call calc_wait_backoff
c calculate and wait the backoff time
return
end
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n

short

10

20

subroutine search

explanation:

The search subroutine is called by the collision subroutine.

In search the event that was due to occur, which would indicate
that the packet was successfully transmitted, is removed from
the event calendar, since the packet has collided.

include ‘params. dat’
integer next,mmfe, nsucr, inode
inode=atrib(2)
set inode to the node that generated the packet
next = mmfe(nclnr)
set the pointer "next" to the first location in the event
calendar, which is the next event due to occur
if ( next .eq. O ) then
there are not any events due to occur and the routine
should not have been called
write(nprnt, 20)
format(’ error in collision search
no more entries’)
return
end if
call copy(—next,nclnr,atribd)
a negitive sign in front of the rank specified tells
SLAM that the entry (-next) is a pointer to the location
rather than the specific rank, copy the attributes of the
entry pointed to by next into the atrib array
if ( (atrib(2). eq. inode). and. (atrib(5). eq. 1) ) then
this entry is a transmission event that was
scheduled by inode
call rmove(—next, nclnvr,atrib)
remove this entry from the event calendar and
return to the collision subroutine

else
the entry copied out was not a transmission event scheduled
by inode, so we should continue the search
next = nsucr(next)
increment next to the following entry in the
event calendar
go to 10
return to copy this entry from the event calendar
and continue the process, until the event has been
found
end if
return
end
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1807

subroutine calc_wait_backoff

short explanation:

The calc_wait_backoff subroutine is called by the collision
subroutine. This subroutine checks to see if too many collisons
have occured and the packet should be terminated. The backof#f
is determined using the truncated expoential backoff algorithm.
In this subroutine the sense event is scheduled to occur after
the backoff time calculated has elapsed.

include ‘params. dat’
integer iranum, inode
real unfhi, rannum, bakoff, unfrm
inode = atrib(2)
set inode to the node that generated the packet
if ( atrib(6) .eq. mxcoll ) then
too many collisions have occured
write(nprnt,; 10)inode
format(’ too many collisions in subr. sense ...
inaode = /,1i3)
write(nprnt, 1234)atrib(1)
format(’ atrib(l)=mark time=packet creation time= ’,
£46. 1)
excoll{(inode)=excoll(inode)+1
increment the number of packets lost to excessive
collisions
nodest(inode) = iterm
set the node state to terminate
return
else
there has not been an excess of collisions
if (atrib(&) .ge. 8.0) then
we truncate the upper limit of the random number
unthi=(2#%8)-1
else
calculate the upper limit of the random number
unthi=(2##atrib(4))-1
end if
rannum=unfrm(0. 0, unfhi, iseed)
determine the random number
iranum=int(rannum+0. 3)
turn the random number into an integer
bakoff=iranum#slttim
determine the bakof#f
end if
write(nprnt, 1807) bakoff
format(’ collision defering transmission ... backoff = “/, £10. 3)
call schdl(i,bakoff,atrib)
schedule the node to sense the channel when the backof#f
time has expired
.return
end
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subroutine exitdefer

short explanation:
The exitdefer subroutine is called by the ltfinprop and rtfinprop
events. In this subroutine the packet that was placed in the
defer file, because it had sensed the channel busy, is removed.
Once the correct entry in the defer file is determined., that packet
schedules an immediate sense of the channel, i.e. the sense event
is scheduled.

nmnAnNnnNnnannNnnNnnnn

include ‘params. dat”’
real savl, sav2
integer inode, inrank, nfind, nrank
d write(nprnt, 10)
10 format(’ exitdefer subr. entry point; called by lt/rtfin prop’)
inode = atrib(2)

c set inode to the node that generated the packet
savl = atrib(7) :
c save the end of prop left marker
sav2 = atrib(8)
c save the end of prop right marker
inrank = nfind(1, ( nclnr—1 ),2,0,atrib(2),0.0)
c set inrank equal to the rank of the first entry found
c in the defer file whose atrib(2) is exactly equal to inode
if (inrank .eq. O) then
[ there was not an entry in the defer file from inode and this |
c routine should not have been called
d write(nprnt, 40)
40 format(’ error in rank for exit defer ... entry
1 not found“‘)
end if
call rmovelinrank, { nclnr—-1 ),atrib)
c remove the inrank entry from the defer file and place it’s
c attributes in the atrib buffer
atrib(5) =1
c set a(5) to indicate a transmission event
call schdl(1,0.0,atrib)
c schedule an immediate sense of the channel
atrib(7) = savl
c return the end of prop left marker to a(7)
atrib(8) = sav2
c return the end of prop right marker to a(8)
return
end
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short
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1776

17905

2001

subroutine freersc

expanatian:
The freersc subroutine is called by the endtrans event when a
packet has experienced excessive collisions or has been

successfully transmitted. In freersc one unit of resource of the
origin node is released, so that the next packet waiting in the
node queue can begin the process. In addition much of the

statistics caollection is done in freersc.

include ‘params. dat’
integer inode, i, badpak
real tsys, taccss, tchnl, totsys
badpak=0
assume a successful packet
write(nprnt, 10)
format(’ freersc subr. entry point; called by success,sense’)
write(nprnt, 1776) atrib(2),atrib(s)
format(’ origin = node ‘,£f3.1,’ # of coll. atrib(&) = 7, £#4. 1)
inode = atrib(2)
set inode to the node that generated the packet
call free(inade, 1)
free 1 unit of resource inode [ note: the node number
equals the resource number 1
icnt(inode) = icnt(inode) + 1
increment the number of transmitted packets counter
write(nprnt, 19205)(icnt(i), i=1,maxsta)

format(’ packet count per station (in freersc) = /,10i3)
write(nprnt, 2001)({icoll(i), i=1,maxsta)
format(’ # of collisions per station (freersc routine) = 7, 10i3)

if ( atrib(6) .eq. mxcall ) then
the packet had experienced excessive collisions
badpak=1
set badpak to indicate an unsuccessful packet
end if

if ( badpak .eq. 1 ) then

the packet was unsuccessful
tgood=0.0
do not include the time to transmit in
the throughput
bitsbd=bitshd + atrib(11)
add the number of bits in this packet to the total
number of unsuccessful bits

else .
the packet was successfully transmitted
tgood=tnow—-atrib(12)
calculated the amount of time required to
transmit the packet
bitsgd=bitsgd + atrib(11)
add the number of bits in this packet to the total
number of successfully transmitted bits
end it
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1807

4545

C
d
1957

write(nprnt, 1807) tgood
format(’ time sending good packet = 7, £8. 2)
timegd(inode)=timegd(inode)+tgood
add the time to send the packet to the total time spent
sending packets successfully from the specific node
attempts( atrib(b)+1 ) = attempts( atrib(b) + 1 ) + 1
increment the number of packets successful in the specific
number of attempts required by this particular packet
tsys = tnow — atrib(1l)
calculate the total system delay
write(nprnt, 4545) tsys
format(’ time in system (tsys) = 7, £8. 1)
call colct(tsys, inode)
collect statistics on the total system delay for this
node
it ( atrib(17) .eq. 1.0 ) then
the packet was successful on its first attempt to access
the network
frstat(inode)=frstat(inode)+1
increment the number of packets successfully
transmitted from inode on there first attempt
to access the network
end if
taccss=atrib(12)—-atrib(14)
calculate the amount of time required to access the network
for this particular packet
call colct(taccss, 17)
collect statistics on the amount of time to access the net
if ( badpak .eq. O ) then
the packet was successfully transmitted
tchnl=tnow-atrib(12)
calculate the delay through the channel
call colet(tchnl, 18)
collect statistics on the delay through the channel
end if
totsys=tnow—atrib(1)
talculate the total delay
call colct(totsys, 19)
ctollect statistics on the total delay through the system
write(nprnt, 1957) inode
format(’ leaving freersc subr. inode = /,i3)
return
end
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15

20

3030

4040

subroutine chnlecho(inhedr, inlary, in2arr,maxx, time, numsta, numpos)

explanation:

Prints the header specified as the event or subroutine which
called chnlecho:. the current time, origin node, the network
status array and the node state array.

integer i,maxx.numsta, numpos

integer inlarr(#), in2arr(#)

real time

character inhedr#15

write(6,15)

format(” e e e e e e e e e e e e e e e e et e e o e ‘
) ! )
write(é,20)inhedr, time, numsta, numpos

format(als, ’ time now =7,+¢#9. 1, 7 origin node =‘,1i4, "’
local node =7, i4)

write(é, 3030)(intarr(i), i=1,maxx)

format(’ node state: 2713}
write(b,4040)(in2arr(i), i=1, maxx)
format(’ net status: 4, 713)
write(&,135)

return

end
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subroutine intlc

c
c The intlc subroutine has been included in the discrete event model
c to initialize some SLAM variables and user defined variables.
C

include ‘params. dat’

integer i
c
c initialize user variables:

do i=l.maxsta

excoll(i) = O
frstat(i) = 0O
icnt(i) =0
icoll(i) =0
nodest(i) = 5
ntstus(i) = O
timegqd(i) = 0.0
end do
(=
do i=1,mxcoll
attempts(id)=0
end do
c
bitsgd=0
bitsbd=0
c
c initialize the station delay array ( the user can put any value for
¢ delay between nodes, i.e. the nodes do not have to be equally spaced)
c

do i=1,maxsta-1
stadly(i)=2. 75/(maxsta—1)

end do
c
c
c
return
end
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subroutine otput

short explanation:
The otput subroutine has been included in the discrete event model
so that the simulation results of some specific performance
indicators cold be reported. These specific things include
throughput per node., overall network throughput, number of
collisions which occured per node and total, collisions per
millisecond, number of packets from each node and total number that
were successful on thier first attempt to access the net, number of
packets successful after a given number of attempts, the total
number of packets transmitted from each station and the total
number transmitted, the number of packets discarded due to excessive
collisions, the number of bits successfully transmitted, and
the number of bits unsuccessfully transmitted.

nNnNNnonNnnNnnNnAanaonnhnMmnNn

include ‘params. dat’

(]

integer i, totpak, totfrt, totdcd, totcoll
real tottim,stathu, totthu, frtper, ftaper.disper,colpms, peratt

totcoll=0
tottim=0.0
totfrit=0
totdcd=0
totpak=0

do i=1,maxsta
totpak=totpak+icnt(i)
end do
c
c skip to the next page
write(6, 19095)
19205 format(’1l )
c
10 format(’ )
c
€ CCLLLLLLLLLCLCLLLKLLLLLLLLLLLLLLCE page 1 DO2DODO003D000003200220200000000>
c
do i=1,maxsta
stathu=timegd{i)/xx(25)
write(4,1827) i, timegd(i), stathu
1827 format(’ time spent sending good packets from station
1 i3, = 2 #15.2, Y throughput = , £5. 3)
tottim=tottim+timegd(i)

’

end do
write(h, 10)
write(b, 10)
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7898

&0

1000

c

totthu=tottim/xx(25)

write(4,9898) tottim, totthu

format(’ the total time spent with good packets = ‘, £#12. 2,
’ total throughput = ’/, £5. 3)

write(s, 10)

write(s, 10)

do i=1,maxsta
write(b6,60) i,icoll(i)
format(’ total # of collisions that occured at station
219, = 7, 18)
totcoll=totcoll+icoll(i)
end do
write(&,10)
write(4,10)

colpms=1000*float(totcoll)/xx(23)
write(4, 1000) totcoll,colpms
format{(’ total # of collisions = ‘, i8,
/ coallisions per millisecond = ‘/, £2. 4)
write(6, 1905)

£ L LLLLLLLCLLCLLLLKLKLLLL page 20 22223220203 3203 3200033203325 5352>

c

1957

8585

do i=1,maxsta
write(s, 1957) i, frstat(i)
format(’ # of packets successful on the first’
»’ attempt to access net from /,1i3,’ = ‘,i5)
totfrt=totfrt+frstat(i)
end do
write(b,10)
frtper=100#(float(tatfrt)/float(totpak?)
write(4,8589) totfrt, friper
format(’ total # of 1st access = /,1i9
‘! % of 1st access = ‘, £8. 4)
write(b, 10)
write(b, 10)
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do i=1,mxcoll

if (i .eq. 1 ) then
peratt=100#float{(attempts(i))/float(totpak)
write(b,1010) i,attempts(i), peratt
1010 format(’ # of packets successful on the ’,i2,
1 ‘st attempt = ‘/,1i8,
2 ’ percentage = ‘, £4. 3)
else if ( i .eq. 2 ) then
peratt=100#float(attempts(il))/float(totpak)
write(6,2020) i,attempts(i),peratt
2020 format(’ # of packets successful on the ’,i2,
1 ‘nd attempt = “,18,
2 ! percentage = ‘, #6. 3)
else i ( i .eq. 3 ) then
peratt=100#float(attempts(i))/Ffloat(tatpak)
write(4,3030) i,attempts(i), peratt
3030 format(’ # of packets successful on the ‘.12
1 +‘rd attempt = 7,18,
2 ’ percentage = ‘, £6. 3)
else
peratt=100#float(attempts(i))/float(totpak)
write(b,1111) i,attempts(i), peratt
1111 format(’ # of packets successful on the 7, i2
1 » ‘th attempt = ‘, 18,
2 ‘ percentage = ‘, f6. 3)
end if
end do
write(&, 10)
c
ftaper=100#(float(attempts(1))/float(totpak))
write(6, 2233) ftaper
2233 format(’ % successful on 1st attempt = ’/, £8. 4)
c
write(s, 1903)
c
€ CLLLLLLLLLLILCCLKILCLLLLLLLLLLLKCLC . page 3 223023023200 3000332320303302000050>
c
do i=1,maxsta
write(6,30) i,icnt (i)
30 format(’ total # of packets transmitted from station
1 119, = 7,1i8)
end do
write(6,10)
c
write(bé, 1807) totpak
1807 format(’ total # of packets transmitted = /,1i13)

write(é, 10)
write(é6,10)
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Appendix A.4 Continued

de i=1l,maxsta
write(b,7777) i,excoll(i)
format(’ # of discarded packets from /,i3,
totdcd=totdcd+excoll(i)

‘7, 13)

end do

write(6,10)

disper=100#(float(totdcd)/float(totpak))

write(b6,2696) totdcd.disper

format(’ total # of discarded packets = /,1i9,
‘ 7% of packets discarded = ‘, £f8. 4)

write(sé, 10)

write(s6, 10)

write(&, 2222) bitsgd
format(’ total # of successful hits transmitted = ‘,il5)
write(6,10)

write(6,3333) \bitsbd

format(’ total # of unsuccessful (discarded) bits = /,i8)
return
end
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Appendix A.3 Listing of the PARAMS File

n

[a]

n

o

[g]

implicit none

define user parameters:

integer maxsta,mxcoll, idefer, itrans,icolpr, ijamng, iterm
siidle, intrmv, iseed

real waitim, rymtim, slttim
parameter ( maxsta = 5 )
parameter ( mxcoll = 16 )
parameter ( waitim = 9.4 )
parameter ( v ymtim = 10. 88435374 )
parameter ( idefer = 0 )
parameter ( itrans =1 )
parameter ( icolpr = 2 )
parameter ( ijamng = 3 )
parameter ( iterm = 4 )
parameter ( iidle = 5 )
parameter ( intrmv = 6 )
parameter ( slttim = 5.5 )

parameter ( iseed

define slam variables:

define slam random number stream for backaoff selection

=95 )

integer ii.mfa,mstop:nclnr, ncrdr, nprnt, nnrun, nnset, ntape
real atrib, dd, ddl, dtnow, ss, ssl, tnext
: tnow, xx

common/scoml/ atrib(100),dd(100),dd1(100),dtnow, i1, mfa,mstop., nclnr
snecrdr, nprnt, nnrun, nnset, ntape, ss(100), ss51(100)
» tnext, tnow. xx(100)

define user variables:

integer ntstus,nodest, icnt, icoll, frstat, excoll,attempts
sbitsgd, bitsbhd
real stadly, timegd, tgood

common/iucom/ ntstus(maxsta), nodest(maxsta), icnti(maxsta)
sicoll{maxsta), stadly(maxsta—1),excoll(maxsta)
» frstat(maxsta), timegd(maxsta), tgood, attempts(mxcoll)
sbitsgd,bitsbd
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APPENDIX B LISTING OF THE MODIFIED CSMA/CD SIMULATION MODEL

Appendix B.1 Listing of the Modified Network Model

GEN. ED FRIEDMAN, MULTIRATE LOAD CNTRL, 8/20/84, 1, NO, NO;

LIMITS, 22, 18, 750;

1

atrib(1)
atrib(2)
atrib(3)

atrib(4)

atrib(35)

atrib ()
atrib(7)

nH

atrib(8)

atrib(9) =
atrib(10)=

atrib(11)=
atrib(12)=

atrib(13)=

atrib(14)=

atrib(15)=

atrib(16)=

atrib(17)=

e e Wme We W W e e e Wi W s e W s W W e We W W Wy W W W W We W e e e W e W W e e

atrib(18)=

Describe attributes:

packet creation time
node identification

propagation left marker, if left prop is finished

then atrib(3)=0

propagation right marker, if right prop is finished
then atrib(4)=0

if atrib(5)=0 then event being scheduled is propagation,
if atrib(5)=1 then event being scheduled is transmission
counter for the number of attempts to transmit

end of propagation left marker, if atrib(7)=0 then
finished prop left

end of propagation right marker, if atrib(8)=0 then
finished prop right

packet length in microseconds

atrib(9)-slttim = amount of time left after the
collision discrimination period

number of bits per packet
marks the time transmission is attempted. gets reset
each time a retransmission is attempted

while packet is in the AWAIT NODE atrib(13)=0,

set to 1 when packet leaves the queuve, used to collect
statistics on the amount of time a packet is queved,
tqueud= atrib(14) minus atrib(1)if atrib(13)=0

marks the time when a packet leaves the node queuve (the
AWAIT), used to collect statistics on the time required
to access the network, taccss=atrib(i2)-atrib(14)

set to 1 if the voice packet lifetime is exceeded

set to 1 if packet originated at a data node, set to

2 if packet originated at a voice node

first access attribute, if the packet is trying to
transmit for the first time then atrib(17) is set

to 1 from O, on subsequent attempts to transmit
atrib(17) is incremented

the generation period for the particular voice packet
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Describe SLAM

xx(1)
xx{(2)
xx(3)
xx(4)
xx{(9)
xx(6)
xx{7)
xx(8)
xx(9)
xx(10)

mWounwHuwune

xx(19)=
xx(16)=
xx(17)=
xx(18)=
xx{(19)=
xx(20)=

xx(25)

xx (30)

+ We W e e e W e Br W We Wi e We Wi W W W W e W W e e s e Wi We W s %ms We %e Mo W r e W e W e

files 1-20

file 21

file 22

file 23
STAT., 1, NODE 1 SYS TIME
STAT,2.NODE 2 S§YS TIME
STAT,.3,NODE 3 SYS TIME
STAT, 4, NODE 4 SYS TIME
STAT. S5, NODE 5 SYS TIME
STAT. 6,NODDE 6 SYS TIME
STAT,7,NODE 7 SYS TIME
STAT.8,NODE B SYS TIME
STAT, 9. NODE 9 SYS TIME
STAT, 10, NODE 10 SYS TIME

Glaobal Variables:

the
the
not
the
not
the
the
the
not
the
the
the
the
not
the
the
not
the
the
the

next
next
used
next
used
next
next
next
used
next
next
next
next
used
next
next
used
next
next
next

xx(21)—-xx(24) =

generation period to be
generatiaon period to be
({ node 3 is a data node
generation period to be
{ node 5 is a data node
generation period to be
generation period to be
generation period to be
( node 9 is a data node
generation period to be
generation period to be
generation period to be
generation period to be

used
used
)

used
)

used
used
used
)

used
used
used
used

( node 14 is a data node )

generation period to be
generation period to be

used
used

{ node 17 is a data node )

generation period to be
generation period to be
generation period to be

not vsed

= the simulated time ( ttfin )

xx(26)—xx(29) =

Files Used by SLAM:

not used

used
used
used

= the mean interarrival rate for the data

reserved for the AWAIT NODE at each
channel QUEUE NODE
defer file

event calendar
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a voice
voice

o

a voice

a voice
voice
voice

bW

voice
voice
voice
voice

[ T T

voice
vaice

W

a voice
voice
a voice

/]

nodes

station

node
node

node

node
node
node

node
node
node
node

node
node

node
naode
node



Appendix B. 1

STAT. 11, NODE
STAT, 12, NODE
STAT, 13: NODE
STAT, 14, NODE
STAT, 15, NODE
STAT, 16, NODE
STAT, 17, NODE
STAT, 18, NODE
STAT, 19, NODE
STAT, 20, NODE

Continved

11
12
13
14
15
146
17
i8
19
20

8SYS
8YS
SYS
8YS
8YS
SYS
8YS
8SYSs
SYS
8SYS

STAT, 21, QUEUE DLY
STAT, 22, ACCSS DLY
STAT, 23, CHNL DELAY DATA
STAT, 24, TOTSYS DLY DATA
STAT, 25, QUEUE DLY
STAT, 26, ACCSS DLY
STAT, 27, CHNL DLY

STAT, 28, TOTSYS DLY

?

[
NETWORK;

TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME

DATA
DATA

VOICE
VOICE
VOICE
VOICE

RESQURCE/PACKL, 1/PACK2, 2/PACK3, 3/PACK4, 4/PACKS, 53/PACKG, &/
PACK?7, 7/PACK8, 8/PACK?, 2/PACK10, 10/PACK11, 11/
PACK12, 12/PACK13, 13/PACK14, 14/PACK15, 15/PACK14, 16/
PACK17, 17/PACK18, 18/PACK19, 12/PACK20, 20;

MODEL OF THE NUMBER OF STATIONS ON THE ETHER

M W W % W me W g s

-

i KCLLLLLLLLHvOoiceRwDODDOD2200

CREATE, XX (1), 2900, 1;
ASSIGN, ATRIB(2)=1,
ATRIB(9)=768. O,
ATRIB(11)=768. 0,
ATRIB(15)=0. 0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX (1), 1;
AWAIT(1), PACKIL;

ACT, , » CHNL.;

create packets a

set attributes
packets wait for
immediate branch

t node 1

previous packet to finish
to the channel
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i
i LKL vVvoicenDODDDD000D
CREATE, XX (2), 7300, 1;
ASSIGN, ATRIB(2)=2. O,
ATRIB(2)=748. 0,
ATRIB(11)=748. O,
ATRIB(15)=0. O,
ATRIB(16)=2,
ATRIB(17}=0,
ATRIB(1B)=XX(2), 1;
AWAIT(2), PACKZ2;
ACT, , » CHNL;

me @ W W

i <LK K3edatan>>00>0202>

CREATE: EXPON(XX(30)), 2000, 1;

ASSIGN, ATRIB(23)=3. O,
ATRIB(9)=2048,
ATRIB(11)=2048,
ATRIB(15)=0. O,
ATRIB(16)=1,
ATRIB(17)=0, 1;

AWAIT(3), PACK3;

ACT, , » CHNL;

- W W Wy

; CCLCLLLLLLCHVOice#dIDIDOODIOD>
CREATE, XX(4), 14000, 1;
ASSIGN, ATRIB(2)=4. 0,
ATRIB(9)=748. 0,
ATRIB(11)=748. 0,
ATRIB(15)=0. 0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(4), 1;
AWAIT(4), PACK4; )
ACT, , » CHNL;
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’

P <LK #datan>o>200000>
CREATE, EXPON(XX (301} ), 100000, 1;
ASSIGN, ATRIB(2)=3,

ATRIB(9)=2048,
ATRIB(11)=2048,
ATRIB(15)=0,
ATRIB(16)=1,
ATRIB(17)=0, 1;
AWAIT(3), PACKS;

ACT, ., CHNL.;

®s we W e

i CCCLKLLLLLLCH#voiceRIDDOIDO2000

CREATE, XX (4), 2600, 1;

ASSIGN: ATRIB(2)=6b4,
ATRIB(92)=768. 0,
ATRIB(11)=768. O,
ATRIB(15)=0. O,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(4),1;

AWAIT(&), PACKS;

ACT, .. CHNL;

- wr we W

i KLLLLLLLLLKCvoicedtdDDD>22000

CREATE, XX(7),8600, 1;

ASSIGN. ATRIB(2)=7,
ATRIB(9)=748,
ATRIB(11)=768,
ATRIB(15)=0. O,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(7), 1;

AWAIT(7), PACK7;

ACT, . » CHNL.;
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l Appendix B.1 Continued

-———

i
l 3 LCKLKLLLLKLL#voicewDDOODDDODD
CREATE, XX (8), 6700, 1;
ASSIGN: ATRIB(2)=8,
ATRIB(?)=7468. 0,
ATRIB(11)=74&8. Q,
ATRIB(15)=0. Q,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(8), 1;
AWAIT(8), PACKS;
ACT., ., » CHNL.;

- W W -

i CCKLCLLKKLLKdataun>dd032000>

CREATE, EXPON(XX(30)), 5000, 1;

ASSIGN, ATRIB(2)=9. O,
ATRIB(9)=2048,
ATRIB(11)=2048,
ATRIB(15)=0. O,
ATRIB(146)=1,
ATRIB(17)=0. 1;

AWAIT(2), PACK?;

ACT, , » CHNL;

.
H — —

- W =

i <KL HvoicedwDDDDD02000
CREATE, XX(10), 2, 1;

ATRIB(9)=7468. O,
ATRIB(11)=748. O,
ATRIB(13})=0. O,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(10), 1;

AWAIT(10), PACK10;

ACT, : » CHNL;

i
i
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Appendix B.1 Continued

; - —— —
i
i KLLCLKLKLKLLKLLHVvoicenDDODIOOD033>
CREATE, XX(11). 390, 1;
ASSIGN. ATRIB(2)=11. O,
ATRIB(?)=748,
ATRIB(11)=7648,
ATRIB(15)=0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(11), 1;
AWAIT(11), PACK11;
ACT. ,»» CHNL;

i
i
1]
i <LK HvoicedkdDOD000000
CREATE, XX (12), 2000, 1;
ASSIGN, ATRIB(2)=12,
ATRIB(9)=768,
ATRIB(11)=768,
ATRIB(15)=0,
ATRIB(1&)=2,
ATRIB(17})=0,
ATRIB(18)=XX(12), 1;

AWAIT(12), PACK12;
ACT, ., » CHNL;

- W W e

i LCLLLLKLLLLLHvOoicetDDODO0D22>

CREATE, XX(13), 11000, 1;

ASSIGN, ATRIB(2)=13,
ATRIB(9)=748,
ATRIB(11)=748,
ATRIB(153)=0,
ATRIB(14)=2,
ATRIB(17)=0,
ATRIB(18)=XX(13), 1;

AWAIT(13), PACK13;

ACT, ., . CHNL;
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i
i
P LLLLLLKLKLKLCadataundo>0>20000
CREATE., EXPON(XX(30) ), 70000, 1;
ASSIGN, ATRIB(2)=14,
ATRIB(9)=2048,
ATRIB(11)=2048,
ATRIB(15)=0,
ATRIB(16)=1,
ATRIB(17)=0, 1;
AWAIT(14), PACK14;
ACT, , » CHNL.;

W W W

i KLCLLKLLLLLLHVOicenDSDOIDOOO20

CREATE, XX(15), 6000, 1;

ASSIGN, ATRIB(2)=13,
ATRIB(2)=768,
ATRIB(11)=768,
ATRIB(15)=0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(13), 1;

AWAIT(135), PACK13;

ACT, ., CHNL;

~e  Sme W

i LKL #HvoicedkZDDDIO20030

CREATE, XX(146). 4200, 1,

ASSIGN, ATRIB(2)=16,
ATRIB(?)=768,
ATRIB(11)=768,
ATRIB(15)=0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(14), 1;

AWAIT(16), PACKL14;

ACT., , . CHNL.;

~

-180-



Appendix B.1 Continued

i
i
i KKLCLLLLdatanddDdo30002
CREATE, EXPON(XX (301} ), 40000, 1;
ASSIGN, ATRIB(2)=17. 0,
ATRIB(92)=2048,
ATRIB(11)=2048,
ATRIB(15)=0. O,
ATRIB(146)=1.,
ATRIB(17)=0, 1;
AWAIT(17), PACK17;
ACT, , ,» CHNL;

“ W W W

i <LK HVOoicedndIDO2032000

CREATE. XX(18), 5400, 1;

ASSIGN. ATRIB(2)=18,
ATRIB(9?)=768.
ATRIB(11)=768,
ATRIB(15)=0,
ATRIB(14)=2,
ATRIB(17)=0,
ATRIB(18)=XX(18), 1;

AWAIT(18), PACK18;

ACT,, » CHNL;

W e Wr W W M WM W W W % W We e

3 CCCLKLLLLCvoicesdDO202200

CREATE, XX(19), 3400, 1;

ASSIGN, ATRIB(2)=19,
ATRIB(9)=768,
ATRIB(11)=748,
ATRIB(15)=0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(19), 1;

AWAIT(192), PACK19;

ACT, , . CHNL;

W W e W Mo W W W W e we W
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W W

3 KKK HVOiIceH#IDDDODIDO0

CREATE, XX (20), 8600, 1;

ASSIGN, ATRIB(2)=20,
ATRIB(9)=768,
ATRIB(11)=768,
ATRIB(15)=0,
ATRIB(16)=2,
ATRIB(17)=0,
ATRIB(18)=XX(20), 1;

AWAIT(20)., PACK20;

ACT, , » CHNL,;

P

LU o Bl T DO TR I T S T L LT R D O
|
|
|
|
i

HNL QUEUE(Z21); dump entities into queve
ACT; immediate branch to channel meodel
EVENT, 1; gateway to discrete event model, maps
i entities into event 1 ( sense )
i
i
ASSIGN, XX (25)=60000000; set xx(25) equal to ttfin
END;
INIT, 0, 60000000;
FIN;
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Appendix B.2 Listing of the Modified and New Events and Subroutines

CHttttttdtttttttttttdtttttttttttttttdttttdtttttrdtdtbttddttrtdddd bt tdd

short

nnAnnN"nNnnAannNnA

subroutine event(i)

explanation:

The event subroutine is required by SLAM in all discrete event
models, the user will schedule an event to occur and the event
subroutine calls the particular event when the time scheduled

is reached.

go to (1,2,3.4,5,6,7,8,9:10)., 1

1 call sense

. A~ W N

o N o°o

return

call transmit

return

call leftprop

return

call rigtprop

return

call success

return

call endtrans

return

call ltfinprop

return

call vrtfinprop

return

9 call detrate

return

10 call loadchg

return
end

o i i e o e 2 2 o 2 e B s

Ao NN ANn

subroutine sense

short explanation:

The sense event is scheduled from the calc_wait_backoff and
exitdefer subroutines. In sense statistic collection is done,
and statistic collection attributes are set. Then sense looks

at the network status array to see if the channel is idle, if

the channel is idle a transmit event is scheduled, if the channel
is not idle the packet gets put in the defer file.

include ‘params. dat’
integer inode, i
real tqueud
inode = atrib(2)
set inode to the node that generated the packet
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1776

if ( atrib(17) .eq. 0.0 .and. atrib(16) .eq. 2 ) then
this is the first time this vaoice packet has tried to
access the network
call detgen
determine the genervation periad
xx{inode) = atrib(18)
set the generation period for the next packet
end if
atrib(17)=atrib(17)+1
increment the first access atrib
it ( atrib(13) .eq. O ) then
the packet has just left the node gqueue, so collect
statistics and set statistic collection attributes
tqueud=tnow—atrib (1)
if ( atrib(146) .eq. 1 ) then
the current packet is data
call colct(tqueud, 21)
else
the current packet is voice
call colct(tqueud, 23)
end if
atrib(13)=1
atrib(14)=tnow

end if
write(nprnt, 1776)(stadly(i), i=1,maxsta-1)
format(’ station delay . sense. ’, 10£5. 1)

atrib(10) = atrib(9) —-slttim
set a(10) to the amount of time left after the collision
discrimination period
if ( tnow—atrib(1l) .ge. atrib(18) .and. atrib(146) .eq. 2 ) then
" the current packet is voice and it‘s lifetime has
been exceeded

atrib(15) = 1.0
set atrib(15) to indicate that the lifetime

is exceeded

nodest(inode) = iterm
set the node state to terminate

lstpak(inode)=lstpak(inode)+1
collect lost packet statistics

call freersc
call the freersc subroutine so that statistics
can be collected and the next packet can begin
the praocess

return

end if
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1905

30

if ( ntstus(inode) .aq. O ) then

else

end if
return
end

the channel is sensed idle
write(nprnt,20)inode .
format(’ tx. Just occured in subr. sense ... inode = ’,
i%)
atrib(12)=tnow + waitim
set a(i12) to the current time plus the interframe

spacing
write(nprnt, 2525) tnow
format(’ time now = ‘', £9.1, ' a(l2) is set to tnowtwaitim’)

atrib(3) =1

set a(5) to indicate a transmission event
nodest(inode) = itrans

set the node state to transmitting
call schdl(2,waitim,atrib)

schedvle a transmit to be called after waiting the

interframe spacing

the channel is sensed busy
write(nprnt, 1905) tnow
format(’ time is now = ‘, £7. 1)
write(nprnt, 30)inode
format(’ defer entry packet in subr. sense
inode = /,1i93)
atrib(3) =1
set a(d) to a transmit event
nodest(inode) = idefer
set the node state to defering
call +filem( (nclinr-1) ,atrib)
file the packet in the defer file, the packet will
return to sense when the node state returns to idle

Lo o 2 o L B B b o b b B 2 s 2 i 2 2 o5 o o S 2 R O A O P R R o PR TS
subroutine detgen
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n

short

1008

explanation:

The detgen subroutine is called from the sense event, for each
new arriving voice packet. The voice coding rate is determined
by truncating the calcvlated ratenow. and the 18th attribute is
set to the generation period. The counters are incremented.
include ‘params. dat’

if ( atrib(2) .eq. 8 ) then

the packet came from the 8th node and the current
time and voice coding rtate are written

write(nd8x2, 1008) tnow/1000, 1000#%atrib(P)#capcty/atrib(18)
format(1lx, £13. 3, 7, $£7. 1)

end if
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c
¢ truncate ratenow to one of the 4 chosen values of coding rate:
if { ratenow . 1le. 28000 ) then

rate = choice(l)
else if ( ratenow .1t. 36000 ) then
rate = choice(2)

else if ( ratenow .1t. 44000 ) then
rate = choice(3)

else
rate = choice(4)
end if
c
atrib(18) = 1000000s%atrib(?)#capcty/rate
c calculate the generation period from the rate
€ that was chosen
c
if ( atrib(16) .eq. 2 ) then
c the packet bheing processed is voice
if ( atrib(2) .eq. 8 ) then
c write out information on the single node (node 8)
c increment counters

write(nd8, 5008) tnow/1000,rate/1000

write(nd8x2, 5008) tnow/1000, rate/1000
5008 format(1ix, £13. 3, ‘', £7. 1)

num8=numB8+1

sumB=sumB+rate/ 1000

numB8oa=numB8oa+i

sumBoa=sumBoa+rate/1000

end if
end if
C
c
return
end
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1776

1905

n

subraoutine detrate

explanation:

The detrate event is scheduled from the intlc subroutine and
itself. A new value for ratenow is calculated using the feedback
equation. The new value for ratenow is truncated to one of the
chosen values. The collision counter ‘colcnt’ is set to zero.

include ‘params. dat’
real bigq,litq,ravg

set the parameters used in the feedback equation:

bigq = 3.3
litq = 13000
ravg = 33000

call schdl(9, period, atrib?}
schedule detrate to be executed after period
microseconds have

elapsed
write(out2, 1776) tnow/1000,colpms
format(ix, £13. 3,/ ’, 8. 4)

colpms=1000#float(colcnt)/period
calculate the collisions per millisecond
sumc=sumc+colpms
numc=numc+1
write(out2,1807) tnow/1000,calpms
format(ix, £13. 3, ‘, £8. 4)
colecnt=0
set the collision counter to zero

write(outl, 1905) tnow/1000, rateout/1000
format(ix, £#13. 3, 7, £7. 1)
sumrate=sumrate+rateout/1000
numrate=numrate+li
sumpa=sumoa+rateouvt/1000

numoa=numoa+1i

ratenow = ravg + litq#(bigq-colpms)

calculate the new value or ratenow using the feedback
equation
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c truncate ratenow:

1492

if ( ratenow .le. 28000 ) then

rateout = choice(l)

else if ( ratenow .1t. 346000 ) then
rateout = choice(2)

else if ( ratenow .1t. 44000 ) then
rateout = choice(3)

else
rateout = choice(4)

end if

write(outl, 1492) tnow/1000, rateout/1000
format(ix, £13. 3, / ‘2 £7.1)

return
end

L I 2 e o o a2k o e T s
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[l

short

subroutine loadchg

explanation:

The loadchg event is scheduled from the intlc subroutine and
itself. The amount of data traffic is changed dynamically
during the simulation when this event is executed.

include ‘params. dat’

integer i, jyriran, ldtst

real ran, unfrm, ulo, vhi

i=int(tnow/loadtim)
calculated ‘i’ it gives an indication of how long the
simulation has been going

if ( allrand .eq. ‘yes’ ) then
the load is chosen randomly using the random load array
xx(30) = rload(i+l)
else
the loads are non—-random
xx(30) = load(i)

-

end if

calculate statistics:

datadel (i) = sumdel/numdel
avgepm(i) = sumc/numc
loadu(i+1l) = xx(30)
avgrate(i) = sumrate/numrate
avg8(i) = sum8/num8
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(2]

©

if ( tnow .ne. loadtim#float(numchg-1) ) then
the simulation has more than 1 ‘loadtim’ seconds left
to go, so schedule this to be executed in ‘loadtim’
microseconds
call schdl1(10, loadtim, atrib)

end if

set counters:

sumc = 0.0
numc = 0.0
sumrate = 0.0
numrate = 0.0
sum8 = 0.0
numB = 0.0
sumdel = 0.0
numdel = 0.0
return

end

[ e b 2B T B ik e T e T e e e o O B N R i 2

short
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1807

subroutine collision

explanation:

The collision subroutine is called by the transmit, leftprop.
and rigtprop events. The endtrans event is scheduled to be
called after the jam signal is finished being sent. The search
and calc_wait_backoff subroutines are called.

include ‘params. dat’
Teal savl, sav2
integer inode., i
write(nprnt, 8)
format(’ collsion subr. entry point ... called by 1t/rt prop’)
inode = atrib(2) .
set inode to the node that generated the packet

savl = atrib(3)

save the prop left marker
sav2 = atrib(4)

save the prop right marker
icoll(inode) = icoll(inode) + 1

increment the number of collisions
colcnt = colcnt + 1

increment the number of collisions for periodic
calculation of collisions per millisecond
write(nprnt, 1807)(icoll(i), i=1,maxsta)
format(’ # of collisions per station (coll. rout.) = /,10i3)
if ( nodest(inode) .ne. intrmv )} then
the collision did not occur in the interframe spacing
call search
find the success event that was due to accur
and remove it from the event calendar

end if
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1905

5555

atrib(3) = savil

return the prop left marker
atrib(4) = sav2

Teturn the prop right marker
atrib(é) = atrib(é) + 1

increment the number of attempts for this packet
write(nprnt, 1905) atrib(é)
format(’ # of collisions for specific packet = ‘, f4.1)
write(nprnt, 5555) inode
format(’ node = /,i3)
nodest(inode} = i jamng

set node state to jamming
atrib(3) = 0O

set a(5) to indicate a propagation event
call schdl(é,rymtim, atrib)

schedule the end of the jam signal
atrib(5) = 1

set a(5) to indicate a transmission event
call calc_wait_backoff

calculate and wait the backoff time
return
end

o o e a2 I o e R T ek e b S S S o o A S e A T e
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subroutine calc_wait_backoff

short explanation:

The calc_wait_backoff subroutine is called by the collision
subroutine. The backoff is determined using the truncated
expoential backoff algorithm. In this subroutine the sense

event is scheduled to occur after the backoff time calculated

has elapsed. There is also a check to see if too many collisions
have occured.

include ‘params. dat’
integer iranum, inode
real unfhi, rannum, bakoff, unfrm, trund, trunv
inode = atrib(2)
set inode to the node that generated the packet
trund=10
set the truncation for data packets
trunv=9o
set the truncation for voice
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if ( atrib(6) .eq. mxcoll ) then

c too many collisions have eccured
d write(nprnt, 10)inade
10 format(’ too many collisions
1 inode = 7/, i5)
d write(nprnt, 1234)atrib(1)
1234 format(’ atrib(l)=mark time=packet creation tlme— )
1 +6. 1)
excoll(inode)=excoll(inode)+1
c increment the number of packets lost to
c excessive collisions
nodest(inode) = iterm
C set the node state to terminate
return
else
c there has not been an excess of collisions

if ( atrib(16) .eq. 1 ) then
if (atrib(46) .ge. trund) then
unfhi=(2##ttrund)—-1

else
unfthi=(2#tatrib(é))-1
end if
rannum=unfrm(0. O, unfhi, iseed)
iTanum=rannum
bakoff=iranum#slttim
else
if (atrib(6) .ge. trunv) then
unthi=(2##trunvi)-1
else
unfhi=(2##*atrib(6))~1
end if
rannum=unfrm(0. O, unfhi, iseed)
iranum=rannum
bakoff=iranumi#tslttim
end if
end if '
d write(nprnt, 1807) bakof#f
1807 format(’ collision defering transmission ... backoff = 7, +10.3)
call schdl(i,bakoff,atrib)
c schedule the node to sense the channel when the backof#f
c time has expired
return
end
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2001

subroutine freersc

expanation:
The freersc subroutine is called by the endtrans event when a
packet has experienced excessive collisions or has been

successfully transmitted. In freersc one unit of resource of
the origin node is released, so0 that the next packet waiting
in the node queue can begin the process. In addition much of

the statistics collection is done in freersc.

include ‘params. dat’
integer inode, i, badpak
real tsys, taccss, tchnl, totsys
badpak=0
assume a successful packet
write(nprnt, 10}
format(’ freersc subr. entry pointi called by success,sense’)
write(nprnt, 1776) atrib(2),atrib(6)
format(’ origin = node ‘,£3.1,’ # of coll. atrib(é)
inode = atrib(2)
set inode to the node that generated the packet
call free(inode, 1)
free 1 unit of resource inode [ note: the node number
equals the resource number 1]
icnt(inode) = icnt(inode) + 1
increment the number of transmitted packets counter
write(nprnt, 1205)(icnt(i), i=1,maxsta)

‘v £4. 1)

format(’ packet count per station (in freersc) = 7,10i3)
write(nprnt,2001)(icoll(i), i=1,maxsta)
format(’ # of collisions per station (freersc routine) = /,10i3)

if ( atrib(&) .eq. mxcoll ) then
the packet had experienced excessive collisions
badpak=1
set badpak to indicate an unsuccessful packet
end if
if ( atrib(15) .eq. 1 ) then
the packet is voice and it’s lifetime has been exceeded
badpak = 1
set badpak to indicate an unsuccessful packet
end if
if ( atrib(15) .eq. 1 ) then
the packet was discarded due to an excess of lifetime
rwlst(inaode)=rwlst(inode)+1
increment the number of packets lost in a row
if ( rwlst(inode) .gt. rwlstp(inode) ) then
set rwlstp to indicate larger value
rwlstp(inodel)=rwlst(inode)

end if
else
packet was not lost to an excess of lifetime
rwlst(inode)=0
set the rwlst to restart the row counting
end if
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1807

4545

if ( atrib(6) .eq. mxcoll ) then
the packet was discarded due to excessive collisions
rwdisc(inode)=rwdisc(inode)+1
increment the number of packets lost in a row
if ( rwdisc(inode) .gt. rwdiscp(inode) ) then
set rwdiscp to indicate larger value
Trwdiscp(inodel)l=rwdisc(inode)

end if
else
the packet was not lost to an excess of collisions
rwdisc(inode)=0
set the rwdisc to restart the row counting
end if

if ( badpak .eq. 1 ) then

the packet was unsuccessful

tgood=0.0
do not include the time to transmit in
the throughput

bitsbd=bitsbd + atrib(11l)
add the number of bits in this packet to the
total number of unsuccessful bits

else
the packet was successfully transmitted
tgood=tnow-atrib{(12)
calculated the amount of time required to
transmit the packet
bitsgd=bitsgd + atrib(11)
add the number of bits in this packet to the total
number of successfully transmitted bits
end if

write(nprnt, 1807} tgood
format(’ time sending good packet = ’, £8. 2)
timegd(inode)=timegd(inode)+tgood
add the time to send the packet to the total time spent
sending packets successfully from the specific node
attempts( atrib(6)+1 ) = attempts( atrib(6) + 1 ) + 1
increment the number of packets successful in the specific
number of attempts required by this particular packet
tsys = tnow —~ atrib(1l)
calculate the total system delay
write(nprnt, 4545) tsys
format(’ time in system (tsys) = ’, £8.1)
call colct(tsys, inode)
collect statistics on the total system delay for this
node
if ( atrib(17) .eq. 1.0 ) then
the packet was successful on its first attempt to access
the network
frstat(inode)=frstat(inode)+1
increment the number of packets successfully
transmitted from inode on there first attempt
to access the network

end if
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d
1957

taccss=atrib(i2)-atrib(14)
calculate the amount of time required to access the
network for this particular packet
if ( atrib(14) .eq. 1 ) then
the packet is data
call colct(taccss, 22)
collect access statistics for data packets

else
the packet is voice
call colct(taccss, 26)
collect access statistics for voice packets
end if

it ( badpak .eq. O ) then
the packet was successfully transmitted
tchnl=tnow—-atrib(12)
calculate the delay through the channel
if ( atrib(14) .eq. 1 ) then
the packet is data
call colct(tchnl, 23)
collect channel statistics for
data packets

else
the packet is voice
call colct(tchnl, 27)
collect channel statistics for
vaice packets
end if

end if
totsys=tnow—atrib(1)
calculate the total delay
if ( atrib(14) .eq. 1 ) then
the packet is data
call colct(totsys, 24) )
collect system delay statistics for data packets

else
the packet is voice
call colct(totsys, 28) .
collect systerm delay statistics for voice packets
end if

if ( atrib(1é) .eq. 1 ) then
the packet is data and the statistic collection variables,
used to report the data delay during the time interval that
a particular load was present, must be updated
sumdel=sumdel+totsys
numdel=numdel+1

end if

write(nprnt, 1957) inade

format(’ leaving freersc subr. inode = 7, 1i3)
return

end

€ 3636 35 35 3 38 3 38 36 38 36 34 36 36 34 3 36 36 36 3 30 3 30 30 30 38 36 38 96 36 36 36 36 35 36 34 0 30 30 303030 3 36 H I 30 336 30 36 38 3 3 3644 360 I S SR S SE I H ¢
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subroutine intlc

c
C The intlec subroutine has been included in the discrete event
c model to initialize some SLAM variables and user defined
c variables.
c
include ‘params. dat’
integer i
c
¢ initialize user variables:
c
do i=1,maxsta
excoll(i) = O
frstat(i) = 0O
icnt(i) =0
icoll(i) =0
lstpak(i) = 0O
nodest{(i) = 5
ntstus(i) = 0
rulst(i) =0
rwlstp(i) = 0
rwdisc(i) = O
rwdiscp(i)= 0O
timegd(i) = 0.0
end do
c
bitsbd=0
bitsgd=0
c
do i=1,mxcoll
attempts(i)=0
end do
c

€ initialize the station delay array ( the user can put any value for
c delay between nodes, i.e. the nodes do not have to be equally spaced)
do i=1,maxsta-1
stadly(i)=4. 5/(maxsta-1)
end do

¢ initalize attribute 18 and the SLAM global wvariables:
atrib(18)= 16000

c
do i = 1.,maxsta
xx(i) = 16000.0
end do
c
c

ct set the possible coding rates:

choice(l) = 24000
choice(2) = 32000
choice(3) = 40000
choice(4) = 48000
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n M

initalize the counters:
colcnt
colpms
numrate=
sumrate=
numoa
sumoa
num8
sum8
numBoa
sumBoa
sumc
numc
sumdel
numdel

c set the period over which the collisions per millisecond will

¢ be calculated:

period = 32000

CO0O0CO0OCO0O000000C0

c initalize the rate ( first packets coding rate ):
rate = 48000
ratenow= 48000
rateocut= 48000

c set the load array ( vused if non-random loads are desired ):
do i=1,numlds
load(i) = 500#2048/(10#flaat(i))
end do

t set the random load array ( contains the possible loads to be used ):

rload(1) = 500%#2048/15
rload(2) = 500%#2048/5
rload (3} = 300#2048/20
rload(4) = 3500#2048/15
rload(5) = 500#2048/5
rload(&) = 500%#2048/10
rload(7) = 500#2048/25
rload(B) = 500#2048/5
rload(9) = 500%#2048/15

rload(10)= 500#2048/20
rload(11)= 500#2048/25
rload(12)= 500#2048/20
c
€ initialize the data load:
xx (30) = 500#2048/15
loadu(i) = 15
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n

if the user wants the load to be determined randomly for the simulation
then allrand should be set to ‘yes’, otherwise set it to ‘no’
allrand = ‘yes’
set the time between load changes:
leadtim = 5000000
set up files for storing the time/rate data for all the nodes (tr.dat),
the time/collisions per millisecond (ct.dat), the time/rate data for
node 8 (tr8.dat), a file of time/rate data from node B that is to be
plotted (tr8plot. dat):
call opnchk(outl, ‘Lfriedman. csmacd. mrvoi. dataltr. dat’
1 y ‘new’, ‘for’)
call opnchk(out2:; ‘[Lfriedman. csmacd. mrvoi. datalct. dat”’
1 » ‘new’, ‘for’) ‘
call opnchk(nd8, ‘[Lfriedman. cemacd. mrvoi. dataltr8. dat”
1 : ‘new’, ‘for’)
call opnchk(ndB8x2, ‘Lfriedman. csmacd. mrvoi. dataltr8plot. dat”’
1 s ‘new’, ‘for’)
write initial values to the files:
write(outl, 1807) tnow/1000, rate/1000
1807 format(ix, £13. 3, ‘', $£7.1)
write(out2,1776) tnow/1000,colpms
1776 format(ix, £13. 3, ’ ‘, £8. 4)
write(nd8x2,2001) tnow/1000,rate/1000
2001 format(ix., £13. 3, / ‘2 $7. 1)
schedule the collisions per millisecond to be determined,
and the next load:
call schdl(9, period,atrib)
call schdl1(10, loadtim, atrib)

return
end
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short

subroutine otput

explanation:
The otput subroutine has been included in the discrete event
model so that the simulation results of some specific performance
indicators could be reported. These specific things include
throughput per node, overall network throughput. number of
collisions which occured per node and total, collisions per
millisecond: number of packets from each node and total number
that were successful on their first attempt to access the net,
number of packets successful after a given number of attempts,
the total number of packets transmitted fram each station and
the total number transmitted, the number of packets discarded
due to excessive collisions, the number of bits successfully
transmitted, and the number of bits unsuccessfully transmitted.
In addition the number and percentage of packets lost to an
excess of packet lifetime per node and total, the number of
packets lost in a row per node, the total number and percentage
of lost voice packets (includes those lost due to excess of
collisions and those lost to an excess of packet lifetime),
Also, the average coding rate overall and node 8, the percentage
of the load that was data,. the average collisions per millisecond,
and the data delay are reported for the time range that a
particular data load was present. As well as the overall average
coding rate for all nodes, the overall average coding rate for
node 8, the overall average percentage of the load that was data,
and the overall average rate of collisions per millisecond.

inclqde ‘params. dat”’

integer i, totpak, totfrt, totdcd, totcoll, totlst, totvdcd

real tottim,stathu, totthu, #rtper, ftaper,disper, totcpms, peratt
sperlst, totper, vperlst, timel, time2, sumload, avgload
» sumcpm, avgcpmall, sumdd, perdisc

sumload
sumcpm
totvdcd
totlst
totcoll
tottim
totfrt
totdcd
totpak

00000000
o

do i=1,maxsta
totpak=totpak+icnt(i)
end do

c skip to the next page

c

1905

write(s6, 1905)
format(’1 ‘)

10 format(’ ‘)
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c

1827

9898

&0

1000

C

do i=1,maxsta
stathu=timegd(i)/xx(25)
write(4, 1827) i, timegd(i), stathu
format(’ time spent sending good packets from station
»13, 7/ = 7, #15. 2, throughput = ‘, £5.3)
tottim=tottim+timegd(i)

’,

end do
write(b, 10}
write(b, 10}

totthu=tottim/xx(25)

write(&, 9898) tottim, totthu

format(’ the total time spent with good packets = *, £12. 2,
’ total throughput = 7, £5. 3)

write(s, 10)

write(b, 10)

do i=1,maxsta
write(b,60) i,icoll(i)
format(’ total # of collisions that occured at station ’
;15,7 = /,1i8)
totcoll=totcoll+icoll (i)
end do
write(s, 10)
write(s,10)

totcpms=1000#float(totcoll)/xx(25)
write(s6,1000) totcoll, totcpms
format(’ total # of collisions = 4,18,
‘ total average collisions per millisecond = ‘, #2. 4)
write(é, 1903)

£ <L LLLLLCLLLLL L L page 2 DIODDOOIIODDOODZHDDIBODTISISIZOSD

Cc

1957

85895

do i=1,maxsta
write(k, 1957 i, frstat(i)
format(’ # of packets successful on the first’
.’ attempt to access net from ‘., i3,
totfrt=tatfrit+frstat(i)

i3

end do

write(6,10)

frtper=100#(float(totfrt)/float(totpak))

write(é, 8585) totfrt, friper

format(’ total # of 1lst access = ‘, 19,
’ % of 1st access = ‘, £f8. 4)

write(4, 10)

write(b,10)
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n

do i=1,mxcoll
if (i .eq. 1 ) then
peratt=100#float(attempts(i))/float(totpak)
write(4,1010) i,attempts(i), peratt
1010 format(’ # of packets successful on the ’,1i2,
1 ‘st attempt = 7,18,
2 ’ percentage = ’, £6. 3)
else if ( i .eq. 2 ) then
peratt=100#float(attempts(i))/float(totpak)
write(4, 2020) i,attempts(i),peratt
2020 format(’ # of packets successful on the ’,i2,
‘nd attempt = 7,18,
2 ’ percentage = ‘, £4. 3)
else if ( 1 .eq. 3 ) then
peratt=100#float(attempts(i))/float{totpak)
write(sb,3030) i,attempts(i),peratt
3030 format(’ # of packets successful on the ’,i2
1 s ‘rd attempt = 7,18,
2 ! percentage = ‘, £46. 3)
else

[

peratt=100#fioat(attempts(i))/float(totpak)
write(s,1111) i,attempts(i), peratt
1111 format(’ # of packets successful on the ’,i2
1 s ‘th attempt = “, 18,
2 ’ percentage = ‘, £f&. 3)
end if
end do
write(é, 10)

2]

Ftaper=100*(Float(attempts(1))/Float(totpak))
write(6,2233) ftaper
2233 format(’ 7% successful on 1st attempt = 7, £8. 4)

n

write(&, 19035)
c A
£ <L LLLLLLLLLLLLLLL LKL page 3 DODDDIDODDDSDIISDDIZIIDOIDIIOIIOOY
c
do i=1,maxsta
write(6,30) i,icnt(i)
30 format(’ total # of packets transmitted from station
1 ,1i5, 4 = 4,1i8)
end do
write(6,10)

(2]

write(6,1807) totpak

1807 format(’ total # of packets transmitted = /,i13)
write(6, 10)
write(6,10)
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write(s, 1551)
1551 format(’ ——-—packets discarded due to excessive collisions———"')
do i=1,maxsta
perdisc=100#float(excoll(i))/float(icnt(i))
write(é,3773) i,excoll(i), perdisc,rwdiscp(i)

3773 format(ix, ‘station “,1i2,’: # of packets discarded = ’
1 » 13, 3x, ‘percentage = 4, £5. 2, 3x
2 s ‘discarded in a row = “, i2)
if ( i.npe.3 .and. i.ne. 5 .and. i.ne. 2?2 .and. i.ne. 14
1 .and. i.ne. 17 ) then

totvded = totvdcd + excoll(i)

end if

totdcd=totdcd+excoll (i)
end do
write(é, 10)
disper=100#(float(totdcd)/float(totpak))
write(s, 26246) totdcd,disper

9696 format(’ total # of discarded packets = ’,1i9,
1 ‘ %Z of packets discarded = ’, £8. 4)

write(6,10)
write(6,10)

write(6,2222) bhitsgd
2222 format(’ total # of successful bits transmitted = 7, i15)
write(b,10)

write(6,3333) bitshbd
3333 format(’ total # of unsuccessful (discarded) bits = “, i8)
c
write(6, 1905)
c
c
€ LLLLLLLLCLLLLLLLLLLLLILL LKL page 4 DODDDDODIODLIDIDOIDOIDDIDDIOIOODS
c
write(s, 19920) _
1990 format(’ ———packets discarded due to excess of lifetime———"')
do i=1.maxsta
if ( lstpak(i) .eq. O .or. icnt(i) .eq. O ) then

perlst=0.0
else
totlst = totlst + lstpak(i)
perlst = 100#float(lstpak(il))/float(icnt(i))
end if
write(4,2000) i,lstpak(i),perlst,rwlstp(i)
2000 format(’ station ‘,1i3,’: # of packets lost = /
1 + 14, 1 percentage = ‘, £5. 2,
2 ‘ # of packets lost in a row = “
3 1 12)
end do
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. Appendix B.4 Continved

totper = 100#float(totlst)/Ffloat(totpak)
write(6, 10}
write(&, 3000) totper, totlst
3000 format(’ average percentage of lost packets = ‘, £7. 4,

1 ‘ total # of packets lost = ‘/, i)
c
c
write(b, 10)
write(s6.,10)
vperlst = 100#float(totlst+totvded)/float(totpak)
write(b, 29920) totlst+totvdcd, vperlst
2990 format(ix, '———— total of lost voice packets ————- ‘1 /s 5%
1 » ‘number = /,19,5x, ‘percentage = ‘, 7. 4)
Cc .
c
write(6, 1205)
c
€ < LLLLCLLLL L L LKL page S5 3030 00 0 30 20 20 30 S 20 200 2 o 0 20 00 I 0 20 30 0 25 20 30 00 20 0 4
c
c
c
avg8(numchg) = sumB8/numB
avgrate(numchg) = sumrate/numrate
avgecpm(numechg?)? = sumc/numc
datadel(numchg) = sumdel/numdel
write (&, 3970)
3920 format(1lx, ‘average rate’, 26x, ‘average’, 3x, ‘average’, /
1 s 1x, “total’, 2x, ‘node 87,2x, ‘time range’,4x, ‘4 load”’
2 + 3%, ‘calpms’, 3x, ‘data delay, ms’)

do i=1,numchg

sumdd = sumdd + datadel(i)/1000
sumcpm=sumcpm+avgepm(i)
timel = loadtim#float(i—-1)/1000000
if ( i. ne. numchg ) then

time2 = loadtim#float(i) /1000000
else .

time2 = xx(25)/1000000
end if
if ( i.ne.1 ) then

loadu{i) = 500#2048/1loadu(i)
end if
sumload = sumload + loadu(i)
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end do

if ( time2.1t. 10 ) then
write(é, 1001) avgrate(i),avgB(i), timel, time2, loadu(i)
:avgepm(i), datadel (i) /1000
format(2x,£4. 1,3x, 4. 1,3x,#4. 1, '—", £3. 1, 7%, £4. 1
+ 3%, 7. 4, 4%, £8. 4)
else if ( time2 .1t. 100 ) then
write(4, 1002) avgrate(i), avg8(i), timel, time2, loadu(i)
avgecpm(i), datadel(i) /71000
format(2x,f4.1,3x, f4.1,3x,f4.1, '—', £f4. 1, 6x, ¥4. 1
+ 3%, £7. 4, 4x, £8. 4)
else
write(4, 1003) avgrate(i),avg8(i), timel, time2, loadu(i)
savgecpm(i), datadel(i)/1000
format(2x, f4.1,2%x, 5. 1,3x,f4. 1, '—', £5. 1, 5x, 4. 1
s 3%, £7. 4, 4%, £8. 4)
end if

write(s,10)

avgload=sumload/float{numchg)
avgcpmall=sumcpm/float(numchg)

write(b, 39922) sumoa/numoa, sumBoa/numBoa, avgload, avgcpmall

s sumdd/float{numchg)

format(ix, ’ overall average rate = ‘/, £7.4,/,1x
s ‘overall average rate for node 8 = ‘. £7.4,/,1x
! average percent load = ', £7.4,/, 1x
» overall average colpms = ‘', £7.4,/, 1x
! average data delay in ms =’, f8. 4)

call vclose(outl)
call uvclose(out2)
call vclose(nd8)

call vclose(ndBx2)

return

end
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Appendix B.5 Listing of the PARAMS File

implicit none

c
¢ define user parameters:
c
integer icolpr,idefer,iidle, ijamng, intrmv, iterm, itrans, iseed
1 smaxsta, mxcoll, numchg, numlds, numrlds
c
Teal capcty, genper,rymtim, slttim, waitim
c
parameter ( idefer = 0 )
parameter ( itrans =1 )
parameter ( icolpr = 2 )
parameter ( 1ijamng = 3 )
parameter ( iterm = 4 )
parameter ( iidle = 5 )
parameter ( intrmv = & )
c
parameter ( capcty = 1.0 )
parameter ( maxsta = 17 )
parameter ( mxcoll = 16 )
parameter ( numchg = 12 )
parameter ( numlds = 4 3
parameter ( numrlds= 12 )}
parameter ( rvymtim = 4.8 )
parameter ( slttim = 9.0 )
parameter ( waitim = 9.6 )
c
c
c define slam random number stream for backoff selection
: parameter ( iseed = 5 )
c
c
¢ define SLAM variables:
c
integer ii,mfa,mstop,nclnr, ncrdr, nprnt, nnrun, nnset, ntape
Teal atrib, dd, ddl, dtnow, ss, ssl, tnext
1 » tnow, xx
(4
common/scoml/ atrib(100),dd{(100),dd1(100), dtnow, ii,mfa,mstop, nclnr
1 sncrdr, nprnt, nnrun, nnset, ntape, ss(100), ss1(100)
2 s tnext, tnow, xx(100)
c
c
c define user variables:
c

integer ntstus, nodest, icnt, icoll, frstat, excoll, attempts
sbitsgd, bitsbd, 1stpak, rwlst, rwlstp, colcnt
soutl, out2, nd8, nd8x2, rwdisc, rudiscp

real stadly, timegd, tgood, choice, rateout
s period, colpms, load, rload, rate, ratenow
» sumrate, numrate, avgrate, sumB. num8, avg8
» SUMOa, numoa, sumBoa, numBoa, loadtim, loadu
;» sUMC, numc, avgcecpm, datadel, sumdel, numdel

[V

SO -
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Appendix B.5 Continued

character#3 allrand

common/iucom/ ntstus{maxsta), nodest{maxsta), icnt{maxsta)
sicoll(maxsta),stadly(maxsta—1),excoll(maxsta)
» fratat{maxsta), timegd(maxsta), tgood, attempts{(mxcoll)
sbitsgd.bitsbd, lstpak(maxsta), rwlst(maxsta)
(Tuwlstp(maxsta),choice(4), o0utl, out2
scolcnt, period, colpms, load(numlds), rload(numrlds)
+ Tate, ratenow, rateout
s nd8, ndBx2, sumrate, numrate, avgrate(numchg)
» sum8, num8, avgB8(numchg), sumoca, numoa, sumBoa., numBoa
» loadtim,: loadu{numchg), sumc, numc., avgcpm{numchg)
sallrand, datadel (numchg), sumdel, numdel
srwdisc{maxsta), rwdiscp{maxsta)

N=OONCU DW=
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