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ABSTRACT

A new approach for integrating PCM voice and LAN data on twisted
pair 1is described. The motivation for developing this technique came
from a need to reduce the number of twisted pairs required to
communicate with a voice/data terminal located on a wuser's desk.
Typically, five or more pairs are required: two for access to LAN; two
for digital wvoice; one for power and ground. Traditional solutions
employ TDM-PCM, FDM or Packet Switching. These methods suffer from
synchronization, bandwidth limitiation and complexity problems
respectively. The number of pairs can be reduced using a waveform level
integration of the high rate data and digital voice (or DCP) without
suffering from the above problems.

The integration technique utilizes a new baseband coding system.
Manchester encoded data sources, one at 64/128/160 kbps and one at 1024
kbps, drive a multiplexer which produces a three level waveform at the

receiver. The receiver generates the three level signal by taking the
difference of two received voltages thus providing excellent noise
immunity. The multiplexer output can be transformer coupled to the

receiver allowing power to be transmitted with the signal. The self-
clocking qualities of the original manchester encoded signals are also
maintained for increased clock recovery performance.

Recovery of the sources from the three level waveform requires only
a schmitt trigger and an absolute value circuit, making the hardware
quite simple.

The hardware implementation has been completed and successfuly
demonstrated over 250 feet of twisted pair at rates of 64/128+1024 kbps
and over 100 feet for 160+1024 kbps operation. Operation at 750-800ft
for 64/128+1024 is expected soon. In addition, the work done indicates
the possibility of multiplexing two 1024 KBPS sources on one twisted
pair.
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1. INTRODUCTION

1.1 A Question

Can a new waveform level voice/data multiplexing scheme be developed
that is equal or superior to the schemes that exist today? TDM and FDM
are well developed with many years of experience behind them. Packetized
voice and data seem to be the thrust of mainstream research today. Is a
new effort justified? The answer is developed in the sections that
follow beginning with some background, continuing with a description of
current problems involving multiplexing, and ending with a motivation to

solve the problem and provide an answer to our question.

1.2 Background

The age of high speed, networked, digital computers has arrived.
Computers are available to virtually everybody. Every vyear adds
applications wusing the information gathering, processing, and
distribution capabilities computers possess. Networking is bringing
information to personal computers on desks everywhere. Perhaps, the
word computer should be replaced by "Information source." The age should
be called "The age of high speed networked information sources."

The desire to network information sources is shaping a trend in
building design to include a plan to wire new buildings for power and
for cable to connect information management systems. Installation of
digital pathways for voice and local area network connections are being

demanded by the tenant. Those "“pathways" are likely to be twisted pair
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phone wire. Twisted pair phone wire is used because it is cheap. The
networking/information industry is directing its efforts to take
advantage of the twisted pair trend, and their efforts will result in

more hardware that works with phone wire.

1.3 Problem Description

Soon, if not already, a computer (or terminal) will take its place
beside the phone on every desk. In addition, the phone will become a
digital instrument. Soon, local area networks (LANs) will migrate into
private branch exchanges (PBXs) and the computer will be switchable to
virtually any network. A phone will typically generate 64 KBPS PCM
digital voice. The computer will transmit/receive at rate of 1024 KBPS
or higher.

The computer and the phone typically require about four to five
pairs of wire to connect them to the PBX. Two pair each for duplex
operation plus one pair for power and ground. If everyvbody across the
country suddenly gets a computer on their desk, copper wire would become
a good investment!

The solution shown in figure 1.1 is to reduce the number of pairs

required by using a multiplexer.

1.4 Motivation

The primary motivation to apply multiplexing is to reduce the number of
twisted pairs required for voice/data integration. Decreasing the
complexity of the multiplexer is also desirable. Reducing the number of

twisted pairs required for duplex voice/data communication results in



Computer 1024 KBPS
mpute DATA ‘ .
Multiplexer
N\
N

,

Phone 641160 KBPS \ \

PCM VOICE X

/f )

= e

/ Twasted Patr
/ Phone Wite

Private
Branch
’|  Exchange

i
|
PCM
(\\L ] VOICE (PBX)

g \ A Demultiplexer

Figure 1-1. Data and voice multiplexer solution.

Pg 3



Pg 4

tremendous saving. Two pairs are required for duplex digital voice, two
for a connection to a star local area network (LAN), plus one pair for
power and ground; Five pairs in all. It is possible to wuse only two
(maybe three) pairs with a multiplexer. Roughly half the cost to install
a new connection to a PBX is the cost of labor [polo86]. A simple, wuser
installable multiplexer would reduce the need to add extra wire for

expansion to voice/data workstations, eliminating expensive labor costs.

1.5 Research goal

The goal of this research is to implement a multiplexer that integrates
a PCM voice source and a high speed LAN data source at 1024 KBPS on wire
twisted pair. The voice channel would carry a single 64 KBPS source or
might be capable of carrying AT&T's Digital Communications Protocol
(DCP). DCP carries two 64 KBPS voice channels plus signaling for a
total rate of 160 KBPS. The data would come from a local area network
connection going to a terminal or personal computer (PC) on the user's

desk.

1.6 Traditional solutions

Traditional multiplexing solutions rely on time division multiplexing
(TDM) or frequency division multiplexing (FDM). These schemes can be
classified as waveform level integration techniques. They operate
without knowledge of the type of data they carry. Approaches such as
packet switching work on top of some existing service and generally wuse
knowledge about the statistical properties of the data being transmitted

to determine the transmission protocol. They are implemented with the
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help of additional (fairly complex) hardware using existing digital
transmission facilities. Since a simple solution is sought so that
simple hardware can be implemented, packet switching will not be
considered. A description of a packet voice/data multiplexer is given in
[baum86]. Waveform level multiplexing is the approach that will be
taken for solving our multiplexing problem. Next we will describe some

of the problems with traditional the solutions.

1.6.1 Time division multiplexing (TDM). In TDM, every signal occupies
a small portion of the time needed to transmit pieces of all the
signals. Hence, the name time division multiplexing. A simple, low
speed TDM system can be constructed using a motor driven rotating switch
that repeatedly samples several signals at regular intervals. To
reconstruct the original signals, a similar switch is used in the
receiver that is synchronized to the rotating switch in the transmitter.
The whole operation works reasonably well when the switches are
synchronized.

In practice an electronic method is used to switch one of the
inputs to the output as shown in figure 1.2 with a precise timing
reference controlling the when the switching occurs.

If the signals are quantized, converted to binary using an analog
to digital converter (A/D), then sent in binary form one word at a time
using TDM, then we call the system TDM pulse code modulation (TDM/PCM).
A TDM/PCM system is shown in figure 1.3. This system is complex. The
diagram contains quite a few sophisticated blocks. Ignoring the

hardware for generating the PCM voice, look at the additional blocks
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required for time synchronization and frame synchronization. The system
also uses HDB3/AMI{ line coding to give desirable transmission
properties to the multiplexed signal.

TDM has problems with synchronization; problems that require
sophisticated hardware for correction. Typically, the first problem to
solve is how to provide time synchronization so the demultiplexer Kknows
where to sample the incoming waveform. Secondly, the first time slot
must be located to provide a frame reference position. A repetitive code
the receiver can recognize and track is generated in the first time slot
for the purpose of gaining frame alignment. A frame alignment word
recognizer is shown in figure 1.4. When it detects the frame alignment
word (FAW) the system assumes it has detected the start of a frame. It
may not have though, because the FAW can appear in the data streams
being multiplexed. The demultiplexer checks the next two or more frames
to verify that the FAW is present. If it is after several frames, then
alignment is considered achieved and demultiplexing can begin. The
system continues to check the FAW each frame. Should it be absent for
several frames do to corruption by bit errors then it assumes that
alignment has been lost and begins the search process again.

Sending the frame and clock synchronization information requires
additional complex hardware. Special line coding can be used to provide

better clocking (as was done in Figure 1.3). Still, we can expect that

1 The High Density Bipolar Codes (HDBn) use the Alternate Mark
Inversion (AMI) scheme except that the number of zeroes between ones
is limited to n.
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framing will slip every so often. Digital voice transmission can
tolerate slips since the human ear will smooth out the errors that
result. Computer data transmission cannot tolerate slips since the
computer cannot smooth out the data as the ear does. To make matters
worse the alignment process is statistical in nature since the FAW can
appear randomly in the data before the system locks onto the true FAW;
consequently the delay till frame lock is known only on the average.
For multiplexing a single PCM voice channel and one high rate data
channel the system of figure 1.3 seems too sophisticated, expensive and
unreliable.

TDM/PCM suffers from hardware complexity. The other practical
nultiplexing scheme, frequency division multiplexing, suffers for

similar, though less severe, reasons.

1.6.2 Frequency Division Multiplexing (FDM). A workable FDM scheme to
accomplish the multiplexing task required by figure 1.1 is shown in
figure 1.5.%f This system is called voice over data. The idea is to
translate the digital voice spectrum, using an analog carrier, above the
spectrum (figure 1.6) required by the computer's data, then transmit the
resulting signal.

Like the TDM/PCM system, both sources are manchester encoded to

provide clock recovery (synchronization) information.

+ Other modulations schemes, eg. PSK or FSK could be used for the
voice however with the same problems as the simple AM scheme dis-
cussed here.
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Analog components dominate the FDM multiplexing scheme. Two low
pass filters, two summers, and a multiplier are required in addition to
a cosine signal generator. The demultiplexer requires two filters, high
and low pass, plus an envelope detector to demodulate the double
sideband large carrier (DSB-LC) signal carrying the digital voice. The
demultiplexed signals are passed through schmitt triggers to regenerate
binary signals.

The only difficult portion of this circuit to build is the
multiplier located in the multiplexer. Since, only binary signals are
being transmitted, a simpler implementation might be possible. A pure
analog version will suffer from drift problems due to temperature, and
will require adjustments to compensate.

The bandwidth required for operation (as shown in figure 1.6) is
roughly as follows:

BW 2048 kHz + 128 kHz + 128 kHz + Guard bands

2300 kHz

2300 kHz is probably too high a bandwidth for the twisted pair cable to

handle., The digital voice will be severely attenuated.

1.7 The rest of the story

The chapters that follow describe a new approach to multiplexing the
digital voice and data channels. The scope of the text covers theory,

simulations, and hardware implementations.
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More specifically, here is how the chapter content is broken down.

Chapter 2 is describes the new baseband approach to multiplexing
the voice and data. A theoretical description of the signal used is
given and compared to TDM and QPSK.

Chapter 3 covers the design of the DVM system. The components of
the DVM block diagram are discussed followed by signal characteristics
and differential transmission operation.

The evaluation of the DVM system using simulation tools is
completed in chapter 4.

Details of the DVM implementation in hardware and its performance
are described in chapter 5.

Chapter 6 covers the application of the DVM approach using non-
orthogonal sources at 160 KBPS and 1024 KBPS.

The conclusion and possible extensions to the DVM approach are

discussed in chapter 7.
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2. A NEW BASEBAND MULTIPLEXER APPROACH

2.1 Analog Sum Multiplexer

The first multiplexer design considered used the approach diagramed in
figure 2.1, The 1024 KBPS manchester encoded data is added to the 64
KBPS manchester encoded digital voice.}t Twisted pair wire transports the
sum to the demultiplexer. High and low pass filters separate the data
and voice signals respectively. Finally, schmitt triggers are wused to
reshape the signals to binary levels.

Figure 2.2 shows a time plot of typical waveforms and a spectrum of
the sum. S1 is a manchester encoded sequence of sixteen bits. S2 is a
zero bit manchester encoded. Also shown are the product and sum of $1
and S2. Integrating the product over one voice bit shows S1 and S2 are
orthogonal.+{ The spectrum shown in figure 2.2 shows two nearly distinct
humps representing the data and voice spectrums. The use of the filters
for demultiplexing is now apparent.

Simulations of the system shown in figure 2.1 operated as desired

indicating that a hardware version should be attempted. However, this

+ From here on the rate and the manchester encoding will be dropped.
The 1024 KBPS manchester data will be called 'data' and the 64 KBPS
digital voice will be called 'voice.'

4L The signals are orthogonal over one data bit since each data bit is
plus one for half the bit and minus one for half the bit. Therefore
the integral over one data bit is zero. The orthogonality is a
result of the manchester encoding and the edge to edge alignment of
S1 and S2.
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scheme provided the basis for another approach that showed promise and
lacked the analog filters with their associated problems. The new
scheme is based on the product of the data and voice signals. It might

be called a baseband quadrature phase shift keying (QPSK) system.

2.2 Analog Product

An alternate way to combine the signals is to multiply them together as
shown in figure 2.3. The product is called the DVM (Data, Voice
Multiplexer) signal and is similar to the sum signal shown in figure
2.2; it has a similar spectral shape and contains no DC (it is
balanced). The data signal is defined with different amplitudes then
the S1 signal in figure 2.2. The data signal takes on values of zero (0)
and plus one (+1). Also, the integral of the product over a time T is
equal to zero, so the signals are orthogonal.

The data is demultiplexed by using an absolute value function.
Remember that the data signal is multiplied by a plus one, minus one
signal; the absolute value removes the sign, leaving the data signal.
Look at the product in figure 2.3 and mentally remove the sign, you can
see that the data signal is recovered.

The voice signal is separated from the product by tracking the plus
one, minus envelope present around the data. The schmitt trigger, shown
in figure 2.4, performs this function. The data transitions cannot
change the schmitt trigger output since they lack the amplitude to cross
both (+1/2, -1/2) trigger points. A voice transition (+1 to -1, or -1 to
+1) crosses through both trigger points causing a change in the schmitt

trigger output.



Pg

§ M ML LU L Lo

0 T S U S NN S N W
{ e A iARA '
o LTI
‘A

A

Manchester
Dam [—
1024 KP8S ™
S

.\/ 3 sy  Twisted
N,/ ‘ Pair

Manchester | - ?‘—/

Voice —

84 KEFS

Figure 2-3. Analog product signal.

19



output
/N
- &S +i
' N
--------------- Y nput
Vg : % ?
AN § N\
7 7 -1
- Iai : 17

Figure 2-4. Schmitt trigger.

Pg 20



Pg 21

The product is not done with a conventional analog multiplier.
Chapter 3 will cover the implementation and show a way to get the DVM
signal from the difference of two signals derived using digital coding
of the data and voice. To provide a common basis for evaluation of the
proposed techniques a signal space representation of the DVM signal will

be discussed.

2.3 DVM Signal Space Representation

2.3.1 Signal Space Concepts A signal space diagram consists of several
(generally two, three at most) perpendicular axis'. [coop86] Each axis
represents one orthonormal basis function from a set used to build the
signals to be diagramed. A particular signal is represented by a linear
combination of all basis functions. The coefficient of each basis
function used to make a signal, collectively make an ordered n-tuple
which is a coordinate of a point on the signal space diagram. Each
signal gets a unique point assigned to it this way. With two basis
functions and three values allowed for each coefficient, a set of eight
signals are possible.

Figure 2.5 shows the basis functions phi 1 and phi 2 and the eight
possible signals that can be created using plus one, zero, and minus one
for coefficients. Note that phi 1 and phi 2 are the two possible high
rate data signals. S1, 82, S3, and S4 are the four component signals

used to generate the DVM signal.

2.3.2 The TDM Signal Space 85, S6, S7 and S8 look 1like the signals

that would be generated for a two bit time division multiplexing system,
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with sources generating non-manchester encoded data with amplitudes of
minus one and plus one. (A worthless approach to take since one bit
would be needed for framing.) The point is in TDM, one source modulates
phi 1 and the other source modulates phi 2. If additional basis
functions (block pulses shifted successively further in time) are wused
we can see how a larger TDM frame can be constructed. The TDM signal
components S5 and S7 lack a feature of S1 through S4: They 1lack any

transitions. This makes clock recovery difficult (but not impossible.)

2.3.3 The DVM Signal Space S1 through S4 contain transitions in every
data bit cell, maintaining the self clocking property of manchester
encoded signals. The interesting aspect of the DVM signal components,
and in contrast to the TDM components, is that the individual voice and
data channels do not modulate phi 1 and phi 2 separately. Instead, phi 1
and phi 2 represent the two possible data channel signals and the voice
signal determines the amplitude. The voice modulates both phi 1 and
phi 2 independent of the data present in them.

The LAN data entering the multiplexer must be manchester encoded
for this approach to work. Phi 1 and phi 2 will not be the signals
shown in figure 2.5 if the incoming LAN data is not manchester encoded.
It is a simple matter to manchester encode the LAN data so this is not a
problem.

In addition, the signals S1 through S4 will only be generated if
the manchester encoded sources are orthognal. Introducing some phase
shift between the signals will introduce some distortions in the product

signal which is composed of various combinations of 81 through S4. 1If
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phase shift is present the demultiplexing processes is not affected, but
the processe of regenerating the individual data bits from the analog

streams coming from the multiplexer is.

2.3.4 Quadrature Phase Shift Keying. Signal components S1 through S4
can be viewed as a form of QPSK; The signal S1 shifted by 90 degrees to
form S2, 180 degrees to form S3, and 270 degrees to form s&. This 1is
similar to the typical QPSK system which uses four phases of a sine
waveform. The two channel TDM system can be block diagrammed (figure

2.6) in a similar way to the sine based QPSK system.

2.4 Baseband Implementation.

Chapter 3 covers the implementation of this scheme, primarily explaining
how the two signals are multiplied together. Keep a finger on figure

2.3, the signals shown are useful for seeing how the system works.
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3. Data Voice Multiplexer Design

3.1 Overview

This chapter describes the DVM system design. Greater detail is
provided, particularly on how the multiply operation is performed. This
chapter is the basis for discussions of the SYSTID [fash84] system
simulations of the DVM (chapter 4) and the hardware design (chapter 5).
The block diagram of figure 3.1 shows the top level view of the DVM.
The individual blocks are discussed in order from the sources to the
manchester decoders.

Remember that the research goal was the development of the
multiplexer and the demultiplexer. The additional blocks (voice and
data generators, channel model, and manchester decoders) are required
for testing purposes.

The blocks in figures 3.2 through 3.6 are labeled in italics with
the names of the corresponding simulation model names. Also, the
simulation node names are included for easy reference to the simulation

code that will be discussed in chapter 4.

3.2 Voice and Data sources

The sources are diagramed in figure 3.2. The sources are modeled as
random NRZ binary waveforms with levels 0, +A. Figure 3.2 shows two

clocks; one driving each RANPLS (random pulse) block. The clocks run at

1024 KkHz and 64 KkHz (also 160 kHz or 128 KkHz), and are edge
synchronized. On each rising edge of the clock, a new pulse level is

generated with equal probability. This pulse is then manchester encoded
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by taking the exclusive-or of the clock signal and the binary waveform.
To see that this operation generates a manchester encoded waveform

consider the following table:

Clock

Signal

XOR

TABLE 3-1. Demonstration of Manchester Encoding

3.3 Multiplexer Product Implementation

This section explains how the required product is efficiently performed.
Recall from chapter 2 that the manchester encoded voice and manchester
encoded data are multiplied together. The two signals were not defined
the same so it would seem that the multiply would have to be done with a
pure analog multiplier. Fortunately, this is not the case. The
capability to multiply by plus one (+1) and minus one (-1) is all we
need.

The_product is formed using an unusual combination of digital and

analog components. 4+ Table 3.2 and figure 3.4 illustrate how the product

-+

Keep in mine that digital hardware uses voltages to stand for logi-
cal true and false values. At one point the voltages representing
true and false are subtracted in analog fashion. Do not let it
scare you!
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is obtained. In table 3.2, starting at the left, the four possible
combinations of the binary waveforms MCV (manchester coded voice) and
MCD (manchester coded data) are shown. MCV and MCD are the inputs to
the DVM system. Internal to the multiplexer block shown in figure 3.3,
the two signais drive 4 to 1 digital multiplexers (mux) which act as
code lookup tables. The four possible combinations of MCD and MCV select
one of four values to output for each 4-1 mux. The PLUS and MINUS
columns of table 3.2 correspond to the code values of the two 4-1 mux's.
The difference column shows the result of an analog subtraction of the
voltages representing the digital 1's and 0's. This difference is the
product formed by multiplying the voice and data signals defined in
figure 2.3! Thus showing that figure 3.3 will generate the DVM signal.
An interesting feature of this implementation is that a difference of
two signals is involved. The difference operation can be placed in the

receiver and noise can be removed by just subtracting it out!

MCV MCD ||PLUS MINUS DIFFERENCE || PRODUCT || VOICE DATA
0 0 0 0 — 0 0 -1 0
0 1 U] 1 — -1 -1 -1 L
1 0 0 6 — 0 0 +1 0
L L 1 0 — +1 +1 +1 l

TABLE 3-2. DVM signal product formation.
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An alternate method to obtain the product is to use the approach
shown in figure 3.4. Here, the MCD signal is added to, or subtracted
from, zero under the control of MCV. When MCV is plus one (high), MCD
is added to zero (multiplied by +1). When MCV is zero (low), MCD is
subtracted from zero (multiplied by -1). 1In this way, MCV's sign is
transferred to MCD; exactly what happens when MCV and MCD are multiplied
together. The digital implementation is considerably simpler then any
analog multipler. There are no components to adjust and no problems
with drift.

The greatest advantage with this implementation is where the
differential amplifier can be placed. The obvious placement (in the
receiver) makes a tremendous impact on the amount of noise the system

will handle.

3.4 The Channel.

The channel model is covered in detail in chapter 4. Briefly, a
frequency domain transfer function for the channel is generated, then an
FFT (Fast Fourier Transform) is taken to find the impulse response. The
output of the channel is obtained by convolving the input with the

impulse response, It then passes on to the demultiplexing section.

3.5 The DVM demultiplexer

The demultiplexing operation (figure 3.5) consists of two simple
functions. The three level DVM signal (figure 3.3) is sent to both

functions and the respective signals are pulled out.
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The manchester encoded voice is recovered by a schmitt trigger with
trigger levels at =-A and +A. This choice of levels results in the
output of the schmitt trigger being the sign of the input signal.

The manchester encoded data is recovered by ignoring the sign of
the three level signal. An absolute value function performs this task.

Figure 3.5 shows an additional schmitt trigger in the data recovery
subsystem. The absolute value output is an analog signal that, after
going through the channel, will have rounded edges and slow rise times.
The binary signal is recovered by the schmitt trigger. A simple
threshold could have used but for various reasons discussed later the
hardware was implemented with a TTL (transistor transistor logic) family
schmitt trigger. To make the simulations as close to the hardware as

possible the schmitt trigger was modeled as a 74ls14 TTL gate.

3.6 Manchester decoders

The final blocks of figure 3.1 to cover are the manchester decoders.
The manchester decoder outputs NRZ (non return to zero) data. Its
operatioE is complex compared to the simple exclusive-or gate used for
manchester encoding.

The decoding process, shown in figure 3.6, begins with the
generation of a delayed version of the input signal MC. MCDLY, the
delayed MC, is then exclusive-or'ed with MC. The resulting signal
called TRIG, consists of narrow pulses at the location of every rising
and falling edge of MC. The center of every manchester encoded bit
contains a rising or falling transition; transitions at the start or end

of any cell is not guaranteed. A "filter" is needed to remove all the
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start and end cell transitions and keep the center cell transitions.
The resulting signal can be used as a clock to recover the NRZ data.

The filter is made with a timer circuit. When a TRIG pulse occurs
the timer is started for a time equal to three quarters (3/4) of the
period of the manchester encoded data. For the 1024 KBPS data stream
this is 732 ns. The timer cannot be retriggered until it has turned off
again.+ The combination of these two properties causes all the leading
and trailing cell pulses to be discarded. Once the timer is
synchronized, the 3/4 bit delay will always skip over any pulses in
between the center cell pulses. The timer gets synchronized when MC
changes from a zero to one or one to zero bit cell. The output of the
timer becomes the CLK signal which clocks the D-Flip flop to sample the
incoming MC. It will always sample in the first half of the cell. If
it samples a high value it knows the cell represents a zero, a low value
represents a one. The NRZ data is taken from the Q bar output of the
flip flop for this reason.

Next the signal properties of the DVM signal are cavered.

3.7 DVM signal properties

The DVM signal has two desirable properties. First, every cell contains
timing information since a transition occurs in the center. The
manchester decoders use this center transition for to regenerate the

sample clock. Second, the signal contains no significant DC level.

4 The timer output goes HIGH when it turns OFF.
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This allows the signal to be transmitted through transformers.
(Transformers will not pass DC.) This is significant because with
transformer coupling, power can be supplied to the circuit over the same
wires used to transmit the signal.

Having developed the necessary background for understanding the
theory and operation of the data/voice multiplexer we can move on to the

simulation and hardware design of the system discussed next.
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4. SIMULATING THE DATA AND VOICE MULTIPLEXER SYSTEM

4.1 Simulation Purpose

The first simulation program developed for the DVM had one primary use.
It served as a testbed for finding out quickly whether the DVM would
work with a low pass channel. Once the simulation prototype worked,
hardware construction began.

Several questions arose from the initial simulation prototype. Two
of them were initialy focused on: The first was to find out how well
the system worked when the two data sources were not driven by a common
clock. The second was to find out the system performance as a function
of distance.

The nature of hardware makes these questions difficult to answer.
To answer the first question using the hardware would require the
hardware to have a way to generate a controllable phase shift between
two clocks in a continuous manner. The second question would require a
large amount of wire to be chopped up until the system started working;
An expensive solution.

The simulation design and organization is shaped around these
questions and around problems uncovered through experimentation with the
simulation model.

The sections of the chapter that follow describe the organization,
design and results of simulation models developed for the DVM. Section
4.2 describes the simulation organization through the use of an overall

system block diagram. Section 4.3 explains the basic design of the
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simulation components so that the simulation results of section 4.4 can

be easily explained and understood.

4.2 Simulation Organization

Each subsystem of the DVM has a corresponding simulation model as shown
in figure 4.1. Simulations are written in the SYSTID simulation
language [fash83]. Node names are given where signals are used to
connect inputs and outputs of the models. SYSTID allows for a
hierarchical organization of simulation models. A few of the subsystems
are coded into models, allowing the subsystems to be used several times,
vhile others are simply a few lines of code.

The simulation mainline consists of five major parts. Several
models together consitute the data and voice random bit generators and
manchester encoders. Following this is the multiplexer. The
multiplexer feeds the channel model which outputs to the demultiplexer.
The last few modules recover the NRZ bit streams from the multiplexed
manchester encoded data and perform bit error detection.

The philosopy has been to match the hardware and simulation
prototypes as much as possible. The closest match is between the
functional realization of the multiplexer and demultiplexer. Other
portions differ because of diffculties in simulating the exact operation
of the hardware, or because the question to be answered required
difficult hardware modifications. The testing portions of the both
hardware and simulation systems allow the most flexibility in modeling
so they are the least similar. The next section covers how the

simulation components were implemented and highlights the places where
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hardware and simulation differ.

4.3 Simulation Design

This section covers the essential modeling details of the various
components in the simulation. The first section covers analog
components including the channel and schmitt triggers. The second
section covers the digital components. The last section covers the

error detection scheme.

4.3.1 Analog component modeling. Two types of channel models were used
in the course of simulating the DVM system. The first model used to
characterize the channel was a fourth order Butterworth low pass filter
(supplied by SYSTID). The second model is meant to approximate the
actual channel more precisely. It models a transmit side transformer
followed by twisted pair, followed by a receive side transformer.

Figure 4.2 show the process used to obtain the channel model.
First the lumped constant parameters {resistance, inductance,
conductance and capacitance) of the twisted pair plus the 1length are
used to define a frequency domain transfer function for the wire. The
R, L, G, and C parameters are frequency and cable gauge dependent and
are generated from functions found in [bell77]. The transmission line
function is valid only when an infinite line or a line terminated in
it's characteristic impedance is used. The hardware will have proper
termination so this is reasonable.

The transformer's frequency domain characteristics are generated

next. Each transformer is modeled as a second order, bandpass,
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butterworth filter. The overall channel frequency response H(f) is the
product of these functions.

Next, H(f) is sampled at 4096 points and an FFT (Fast Fourier
Transform) is done to find the impulse response h(t). The energy in the
tail of the impulse response energy is trimmed back a few percent to
reduce the number of samples that will be used by the tapped delay line.
The CHANL model reads the trimmed impulse response from a file and sets
the taps on a tapped delay line to convolve the input with h(t).

The other major analog component, the schmitt trigger, is half
analog. The schmitt trigger accepts an analog input and regenerates a
binary signal from it wusing hysterisis instead of simple level
comparison. The SYSTID model allows for selectable high and low trigger
and output levels. This is primarily how the digital components in the

next section are modeled.

4,3.2 Digital Component Modeling. The digital components  have
simplified models. In particular no attempt is made to model
propagation delays. This 1is reasonable, since only a few digital
components are used the propagation delays do not accumulate to
significant amounts. Rise and fall times of the waveforms are ignored
and perfect square pulses are wused. The bandwidth of the digital
devices is so much greater then the channel that the channel is
primarily responsible for increasing rise and fall times in the
transmitted signal. [Lastly, the output and reference levels are
selected to imitate TTL logic devices. The simulations use values of

4.5, 0. and 1.5 for high, low and reference respectively.
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The implementation of the four components used, D flip flop, 4 to 1
multiplexer, exclusive or gate, and timer are found in their simulation
code documentation comments (the simulation code is in appendix A).

Some of the digital devices are used in the error detection system

described next.

4.3.3 Error detection subsystem. The error detection system compares
the original transmitted binary data with the received binary data using
an exclusive or gate (XOR). The XOR output is sampled by the falling
edge of the transmit clock. If the transmit and receive streams differ,
then a counter is incremented and the time of the error is stored. This
information is printed at the end of the simulation run. Since the
delay between transmitted and received signals did not exceed one half
bit time 1in the hardware, it is ok to use the transmit clock falling
edge to sample the XOR of the undelayed TX and RX signals.

Next the performance of the simulated DVM is examined, primarily
through the use of eye diagrams and the output of the error counters on

the data and voice channels.

4.4 Simulation Results

The simulations were done primarily with two DVM programs. The programs
are called DAVIS06 and DAVISO7. They are nearly identical except
DAVIS06 uses a 4th order Butterworth filter for a channel and DAVISO7
uses the twisted pair model described earlier.

Three investigations are described in the following sub-sections:

Performance of DVM using Butterworth channel and twisted pair models and
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finally clock skew effects are examined.

4.4.1 System Performance with a Butterworth Filter Channel Model. To
answer the question about feasibility, the DVM was simulated with a
fourth order Butterworth low pass filter for a channel. (The SYSTID
model {davis06} for this system is found in appendix B.) To judge
whether the DVM worked, two criteria were used: The error detectors had
to register zero errors and the eye diagrams of the channel output (RCV)
had to "look good" (i.e. look decodeable). The DVM performance
capability is more easily judged with eye diagrams then with error
counters. Since ISI (Inter Symbol Interference) is the primary limiting
factor in system performance (noise is not a factor since the
differential operation in the receiver is going to remove most of it)
the error counters tend to give a binary result: The system works or the
system does not work. This is not particularly useful since the error
counters are telling information about how well the manchester to NRZ
data decoders are working and not how well the demultiplexing process is

working. All though more subjective, the eye diagram is more useful so

it will be used throughout the remainder of the chapter to answer DVM
system analysis questions.

There are several features of the data visible in the eye diagrams.
These features are shown ideally in figure 4.3. The most prominent is
in the middle of the diagram where the guaranteed edge in the center of
every bit cell occurs. One quarter of diagram off from the center is
the start/end of a bit. Here, the transition does not always occur and

we see level portions as well as transitions. The last transition to be
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seen is one caused by a voice bit changing from a zero to one or one to
zero. This change shows as a trace going from full negative to full
positive or vice versa. These diagrams show information primarily about
the data signal since the choice for the window width is only two data
bits. Note the 1low and high frequency envelopes caused by the
alternating pattern {1010101...} and by the repetitive pattern
{111...0000...}. The alternating pattern gives a 512 kHz signal and the
repetitive pattern gives a 1024 kHz signal.

Figures 4.4 through 4.7 show eye diagrams of RCV (channel output)
for channels with bandwidths 0.5 Mhz, 1.0 Mhz, 1.5 Mhz and 3.0 Mhz
respectively. The diagrams are drawn with the symbol width equal to two
bits (ie 1/512e3 seconds). Also note that the y-axis scales differ from
one figure to the next.

Figure 4.4 shows a completely closed eye from the repeating bit
pattern. Since this pattern represents a 1024 kHz square wave it is not
surprising to see it completely obliterated by the 0.5 Mhz bandwidth of
the channel. As the bandwidth is increased (figures 4.5 - 4.7) the eye
opens up enough that it can be decoded. The error counters indicated
that the manchester decoding system cannot decode the recovered
manchester data bit stream when the bandwidth was reduced below 2.75
MHz.

The other critical feature to extract from the figures is the
jitter shown at the center of the diagram in the guaranteed transitions.
The 1.5 MHz and 3.0 MHz show the transitions crossing at the same
voltage level. However, the 1.0 MHz chanel shows appreciable

distortion. The distortion will cause jitter in the decoder sampling
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clock since it is these transitions which the system extracts to recover
timing information. The voice channel has jitter introduced because a
voice bit transition might have an envelope represented by a 01 data bit
pattern at the transition.

The next section covers the result from simulating with a twisted

pair channel model.

4.4.2 System Performance with a Twisted Pair Channel. Eye diagrams are
used again for a subjective determination of the system performance.
The simulations use a more realistic model of a real twisted pair cable.
The model takes into account the frequency dependence of the lumped
constant parameters defining the cable. This is necessary since the DVM
system uses two widely seperated data rates (64 and 1024 KBPS). Typical
simplified models of wire are broken into two regions with a boundry at
about- 200 kHz. Since the DVM operates with frequencies above and below
this boundry it was decided a more sophisticated model was needed to
include all effects.

The model has several defining parameters. The gauge of the cable
can be selected as well as the length. The cable gauge indirectly
specifies a set of coefficients used to compute the frequency dependent
lumped constant parameters (R,L,G,&C in Htp in figure 4.2.) [Bell77]

It waé hoped this model would allow us to determine over what
distance the DVM system would operate. Unfortunately, the hardware
described in chapter 5, does not give performance similiar enough to the
simulated cable to derive conclusions necessary to answer the length

question from the simulations alone.
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Figure 4.8 shows the eye diagram from a simulation using 250 feet
22 gauge of twisted pair. It shows why the eye pattern for the 64 KBPS
data is difficult to use. The high rate data clutters it wup. It
appears that a schmitt trigger can recover the voice since there are no
wild transitions through any portion of the eye. Any clock jitter will
be dominated by data transitions occuring at the boundry of a voice bit
transition. At most this amounts to one half a data bit which
represents about 0.5 microseconds of jitter versus a period of 15 micro
seconds for a voice bit. This is hardly anything to worry about.
Changing the voice data rate wup to 128, 160 or 256 KBPS changes the
ratio of these values and clock jitter becomes critical in the
manchester decoding process. NOTE, that it does not matter one iota as
far as de-multiplexing the two data streams is concerned. That process
is analog in nature and independent of the clock information present.

The eye diagrams in figures 4.9 through 4.12 that follow cover two
gauges of wire and two distances: 250 and 500 foot lengths of 22 and 24
gauge wire were simulated.

The interesting comparison to make is the difference between the 22
and 24 gauge pictures. The 22 gauge, as one would expect, gives better
performance. The attenuation of the 24 gauge cable at  higher
frequencies is closing the eye of the repeating bit pattern considerably
more in the 250 foot length. At 500 feet the 24 gauge eye is closed

while the 22 gauge eye looks open enough to recover data.

4.4.3 Investigation of Clock Skew. The DVM system with the butterworth

channel, is wused to investigate the effect of creating a skew or phase
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Figure 4-9. Eye diagram: 22 gauge, 250 ft cable.
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offset between the high rate and low rate source clocks. It is
important to know whether separate clocks can be used to drive the
sources or whether a common clock is required.

Table 4.1 shows a table of clock skews versus errors for both voice
and data chénnels. The voice clock was lagged by multiples of 5% from
102 to 75% of the data bit length. Thirty two bits of voice and 512

bits of data were simulated.

Skew Errors

b 4 (ns) Voice Data
]

5 49 | 0 1
10 98 | 2 3
15 146 | 0 1
20 195 0 0
25 244 0 21
30 293 | 2 16
35 342 | 0 1
40 391 0 1
&5 439 1 0
50 488 | 0 0
55 537 | 0 0
60 586 | 3 0
65 635 | 3 0
70 684 | 2 3
75 732 0 1

TABLE 4-1. Errors vs voice to data clock skew.

Examing the table we see the expectecd result that errors begin to occur
when the skew approaches the 25% mark where the voice transitions

interfere with the data at the data sampling point. + The number of

Entries with three or fewer errors can be ignored because these are
a result of the manchester decoder trying to get synchronized to the
center cell transition. The simulation program prints the time
location of the first ten errors and these were found to be in the
first few initial bits.

-+
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errors quickly drops down again to zero following the sampling point.
Further simulations at lower channel bandwidths will probably show

that the 1lower percents of skew will affect the performance more. 1In

addition, errors will probably creep in around the 50% mark as the voice

transitions add jitter to the data clock recovery.

4.5 Simulation Conclusions

The simulations showed that the DVM was worth building. They also
provided some insight into the performance of the DVM under various
channel bandwidth and clock skew limitationms.

The eye diagrams show the system should work with channel
bandwidths down to 1.0 to 1.5 MHz. More work needs to be done to get
realistic model for the wire but the simulations show significant
degradations occur as the cable length increases or if the cable gauge
is increased. Clock skew does not seem to be problem since nearly 250
nanoseconds of skew is required to degrade system performance. Still, a
common clock for driving the sources is indicated since two seperated
clocks could easily start at random with 25% skews.

Next, the hardware prototype DVM is described along with some

performance evaluations.
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5. Data and Voice Multiplexer Prototype Hardware

This chapter describes the design, principles of operations (POP), and
the performance of the DVM hardware prototype. The first half covers

the design and the second half covers the performance.

5.1 POP - Principles of Operation

This section describes the hardware translation of the DVM concept. The
sub-sections that follow treat each sub-system by describing how it was
implemented in the prototype. An occasional diversion will describe
differences between the hardware and simulation models. The six sub-
systems covered are: sources, multiplexer, channel, de-multiplexer,
manchester decoders, and error detection.

The prototype circuits are drawn on eight sheets located in
appendix B. References to them are made by sheet number. (For example
the signal DATA.CLK is found on sheet 1.) Component and signal 1location

tables are found in Appendix C and D respectively.

5.1.1 Source Bit Streams. The sources consume the largest number of
parts and board space and yet they are not even a part of the DVM
proper! Three and a half pages of the schematic (sheets 1->4) contain
the clock generation, voice and data PN generators, and manchester

encoder circuits. Lets begin with the clock generation.

5.1.1.1 Clock generation Sheet 1 shows the clock generation schematic.
A 20.48 MHz, ComClock TTL crystal clock, is the master system clock

(CLK.20480). Two divider chains, made of binary and decade counters
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connected to form synchronous counters, divide CLK.20480 to form the
five different bit rate clocks required to test the DVM system.

The first chain consisting of U5 and U4, 741s163 synchronous binary
counters, divides CLK.20480 by 128 to get a 160 kHz clock (CLK.160),
The 160 kHz clock is the rate used for AT&T's DCP protocol.

The second chain consists of U1 and U2, 741s163's, and U3, a
7415162 synchronous decade counter. U3 provides an enable signal to U1
and U2 every ten clock pulses, thus dividing CLK. 20480 by ten. U1 and
U2 provide the additional divisions necessary to get the 256 kHz, 128
kHz, and 64 kHz clocks (CLK.256, CLK.128, and CLK.64 respectively) wused
for voice bit rate DVM performance evaluation. Each clock is connected
to HD1 allowing it to be switched to the voice source PN generator.

The second divider chain also provides the 1024 KkHz clock
(DATA.CLK) wused to drive the data source PN generator. The signals
DATA.CLK and VOICE.CLK clock the shift registers of the PN generators on

sheets 2 and 3 which are described next.

5.1.1.2 Pseudo Noise (PN) Bit Stream Generators. The simulations use
software, uniform, pseudo random number generators to produce bit
streams for testing the DVM. The hardware uses pseudo noise bit
streams. These are generated wusing n bit shift registers with several
taps combined and fed back to the shift register input [Smith85]. A
pseudorandom sequence of 2°n-1 bits which has one more 1 bit then zero
bits can be generated this way. A sequence of all zeroes is not allowed
since this would freeze the generator and a continuous stream of zeroes

would be output.
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Long streams of zeros or ones are called runs. One-half the runs
are of length one, one-fourth of length two, one-third of length eight
etc. Two PN sources are required: one for the voice stream and one for
the data streanm. Their design 1is identical and shown on schematic
sheets 2 and 3.

U7 and U8 (741s374 8 bit registers) are connected to form a sixteen
bit shift register. Only fourteen bits of the shift register are used in
the PN generator, leaving two stages left to provide delayed versions.
Feedback is from taps at 2, 12, 13 and 14 bits. The taps are combined
in U6 (741s86 exclusive or) and fed back to the first bit of the shift
register.

A method is needed which protects against the possibility of the
shift register powering up filled with zeroes. U9 (741s163) is used to
detect when a sequence of all zeroes is about to occur. The clock
driving the shift register is also driving U9 to count the number of 0's
appearing in the output stream. It does this by allowing any 1's in the
stream to force the counter to load a value of 0001 and continue
counting. When fourteen 0's occur the count will reach fifteen causing
the ripple carry to go high. This causes the output-enable on the shift
register (U7, U8) to be disabled making the outputs of U7 and U8 go to a
high impedance state. A pull-up resistor on the second to last tap
forces a 1 to appear at the last shift register stage. At the next
clock edge this gets fed back to the front of the shift register and the
sequence will start up.

DPDT switch S1 allows either constant or PN bits to appear at the

inputs to the manchester encoders (TX.VOICE and TX.DATA). The outputs
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of the PN generators (PN.VOICE and PN.DATA) are connected to S1 (sheet
4) along with constant voltages: Plus five volts for the data signal and
zero volts for the voice signal. The constant voltages will be
manchester encoded into a continuous stream of 1's (data) or O's

(voice).

5.1.1.3 Manchester encoders. Manchester encoding is done for a source
by combining the source clock with the source NRZ bit stream using an
exclusive-or just like the simulation model. U6 (741586 XOR) combines
VOICE.CLK and TX.VOICE to form INT.MCV (internal manchester coded
voice). U11 combines DATA.CLK and TX.DATA to form INT.MCD. Switch 82
selects either the internal manchester coded streams (INT.MCV or
INT.MCD), or external manchester coded streams (EXT.MCV or EXT.MCD) from
front panel DB-25 connecter J1. The switched signals are called MCV and

MCD and are routed to the input of the multiplexer described next.

5.1.2 Multiplexer. The multiplexer is certainly the simplest portion
of the entire DVM prototype since it consists of only one IC. Its
operation is simulated the same way it is implemented. The two
manchester encoded sources are coded to drive the PLUS and MINUS signals
transmitted over the twisted pair.

The multiplexer, U15 (7415153 dual four to 1 multiplexer), is wired
as two four selection coders. The multiplexers (Mux1 and Mux2) have
common select inputs (B and A) driven by the signals MCV and MCD
respectively. The two bit combination of MCV and MCD allows selection
from one of the four inputs on Mux! or Mux2. The four inputs are wired

according to the following table.
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MCV MCD Mux1 Mux2
(B) (A) (PLUS) (MINUS)

-_0 O
-0 =0
Y =R =)
oo-o0

TABLE 5-1. U115 multiplexer input coding

The output of Mux1 drives the PLUS signal and Mux2 drives the MINUS
signal. These signals are passed on to the line drivers discussed next

in the channel circuitry section.

5.1.3 Channel Circuity (Line Drivers). There are four major
"components" to the channel section. These are line drivers, transmit
side transformer, twisted pair, and receive side transformer. The
channel components have proved the most difficult to model in the
simulations. They also present certain problems in implementation. For
instance the twisted pair must be terminated in its characteristic
impedance at the receive side and at the transmit side line drivers.

The line drivers (sheet 4) are little more then electronic single
pole double switches implemented using a couple of transistors. (Note
the PLUS and MINUS drivers are identical so only one will be described.)
U17 and U10 are used to provide true and complemented values of the PLUS
signal. These signals drive the totem pole arrangement of Q3 and Q4
forming the SPDT switch. The switch connects the 50 ohm impedance
matching resistor R3 to either VCC (+5) or GND. The other terminal of
R3 connects to the DOT terminal on pulse transformer T1. Transformer

operation is possible in this circuit because the three level DVM signal
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has no DC component in its spectrum (see chapter 2.)

An identical circuit is connected to the MINUS signal from the
multiplexer. The function of these two circuits is to force currentin
either direction through T1. This action developes a signal across the
receive side transformer impedance matching resistor R4 with a swing of
five volts.

The twisted pair is connected via RJ11, 4 pin modular telephone
jacks J2 and J3. The jacks connect to the pulse transformers at both
ends of the system.

The output of receive transformer T2 is connected to the input of a
differential amplifier (gain = 2) formed from R5-R8, C1,C3 and U16
(LM318 - high slew rate operational amplifier {opamp}) which provides
the difference (RCVSIG) of the PLUS and MINUS signals. RCVSIG is passed
on to the de-multiplexer section which recovers the voice and data

manchester coded signals.

5.1.4 De-Multiplexer. The de-multiplexer system, like its simulation
counterpart, consists of an absolute value circuit and a schmitt
trigger. The absolute value circuit recovers the manchester encoded
data signal (R.MCD) from the three level signal RCVSIG. The schmitt
trigger recovers the voice signal (R.MCV). The implementation of the
schmitt trigger (sheet 5) is described in [Metz].

The absolute value circuit consists of a full wave bridge (D1-D4)
followed by a difference amplifier (R9-R12, C2,C4 and U18) The
difference amplifier is required because the input signal is ground

referenced so the output of the bridge cannot be ground referenced. It
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might be possible however to take the floating output of T1 and connect
it directly to the bridge. This would eliminate the seven components in
the diff-amp. The output of opamp U18 drives a 741s14 schmitt trigger
which takes the analog output of the absolute value circuit and
regenerates a binary signal from it. (This schmitt trigger is modeled
in the simulation)

Manchester decoding of R.MCD and R.MCV is performed using several

IC's and discrete components as discussed next.

5.1.5 Manchester Decoders. The manchester decoders are implemented in
the same manor as the simulation models. Operation is probably not
quite as "ideal" because two parts of the decoders, the delay and the
timer operation, are made partially using analog components which are
difficult to model. Nearly identical circuits are used to recover the
NRZ voice and data streams. The only difference being the resistor
values used to define the timer on time.

Two schmitt trigger inverters from U19 provide approximately thirty
to forty nano-seconds of propagation delay to the incoming manchester
encoded to form MCD.DLY (refer to figure 3.6 pg 36 for signals).
MCD.DLY is XOR'ed by U21 with R.MCD to generated narrow pulses at each
rising and falling edge of R.MCD. These pulses are used to trigger the
timer made with the non-retriggerable configured monostable
multivibrator U22. The non-retriggerable mode causes U22 to filter out
every other trigger pulse, Kkeeping the center transitions from the
manchester encoded waveform. (Note: this requires that a 1->0 or 0->1

bit sequence is transmitted so the timer can become synchronized to the
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center transitions.) Every time it is triggered, the Q bar output of the
mono-stable goes low for 75% of a bit time.

R22 and C5 determine the timer on length. The TTL data book gives
curves and formulas for determining these values but I found it easier
to select the capacitor to get the time in the right range then use a
multi~turn potentiometer (R22 for data decoder, R28-R29 for voice) to
trim the value to 75% on time with the circuit running.

The rising edge of the Q bar output (D.CLK) clocks a D-flipflop
(U23) causing it to sample D.MCD one quarter of the way into a bit.
Recall that a manchester encoded 0 bit is sent as a 10 and a 1 bit is
sent as a 01. Consequently, if the flipflop samples a 1 then the
received bit is a 0 bit, otherwise it should be a 1 bit. This 1is why
the output bit stream is taken from the Q bar output of the flipflop.

The voice decoder differs from the data decoder in this respect
since it has an additional stage of inversion after the schmitt trigger
in the demultiplexer; The recovered NRZ bit stream for the voice system
is take from the Q output of U23.

The last remaining system is the error detection subsystem which
takes the recovered NRZ bit streams DATA.BITS and VOICE.BITS and
compares them to the originally transmitted streams TX.DATA and

TX.VOICE.

5.1.6 Error Detection System. The error detection system is
implemented in a manor similar to the simulation code. The transmitted
bit stream is compared continuously with the recovered bit stream using

an exclusive-or gate. The exclusive-or output is sampled at the falling
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edge of the respective bit stream transmit clock with a D-flipflop.
When the streams differ, a 1 is clocked into the flip flop causing the
error signal (D.ERR or V.ERR) to go high. D.ERR or V.ERR can be
connected to frequency counter to find the rate at which errors are
occuring. Note that if the channel and decoding delays exceed one half
a bit period then this system will not work because the transmit and
recovered streams will not overlap with the proper values at the sample
time. Fortunately, the delay was just under the half bit period in the

high speed data channel.

5.2 Performance

The prototype circuitry was constructed in a Tektronix TM-500 series
blank plug-in unit. The whole unit is inserted into a TM-500 instrument
mainframe which supplies power to power supplies on the plug-in.
Operation begins when the TM-500 power 1is turned on and a cable is
connected to J1 and J2 (RJ11 phone jacks). St is set to random or
constant data and S2 is set to internal manchester encoding. Last, a
bit rate for the voice channel is selected by rotating switch S3 to 64
KBPS, 160 KBPS, or 128 KBPS.

Changing the length of the cable affects the operation of both data
and voice channels. Selecting a higher voice bit rate also affects the
error rate. (Peformance of the 160 KBPS system is discussed seperately
in the next chapter.) A secondary, more subjective measure, is eye
diagrams obtained by photographing oscilloscope displays of the output
signals. Figure 5.1 shows the eye diagram obtained by running the DVM

with 100ft of parallel conductor phone cable.
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In a nutshell, the results are the DVM prototype works over 100ft
of parallel conductor phone wire at the 64 and 128 KBPS voice rates plus
1024 KBPS data rate with zero errors. The 1024 KBPS channel showed no
errors over a 24 hour operation period when operating with the 64 KBPS
voice rate over the same 100ft cable. Figure 5.1 shows the eye diagram
of RCVSIG and the transfer characteristic of the channel (Transformers +
cable).

Changing to a longer stretch of 250ft 24 gauge four conductor
shielded cable gave the same results. The DVM would not work with a
length of 750ft. The bandwidth of the cable probably decreased below
the 2.75 MHz so the manchester decoders were not getting enough signal
to work properly.

Next the performance of simulations and hardware wusing the DCP

voice rate are examined.




Pg 73

6. Operation and Performance at DCP Rate.

6.1 The Vee Problem.

Operating the DVM at a voice rate of 160 KBPS (DCP rate) causes problems
since the voice and data signals are no longer orthogonal. To be
orthogonal, the data rate must be an integer multiple of the voice rate
so the signal edges line up. As a result, when the low speed (160 KBPS)
signal makes a transition it will occur occasionally in the inner
portion of a data bit. When the data signal is demultiplexed by the
absolute value, the voice transition in the data makes a notch or '"vee'"
in the data. If the vee is too wide and occurs next to a sample point,
the manchester decoder will incorrectly decode the sampled value.

Figure 6.1 shows oscilloscope pictures of the problem. The top
picture shows constant manchester coded signals and the bottom shows PN
manchester data. The bottom picture would normally have many more vees
in it but it was taken with the scope time base slowed and the 10x
expansion on. This allowed me to scan over the magnified eye diagram
and pick out a vee to illustrate the problem.

The demultiplexing process is not affected by the vee problem.
Only the recovery of the NRZ data from the demultiplexed manchester
encoded data is. The problem caused by the vee can be minimized if it
is made narrower or if the thresholds of the schmitt trigger following
the absolute value are lowered. Unfortunately, as the channel bandwidth
decreases (cable gets longer) the slew rate of the signals decreases and

this tends to widen the vee. If the thresholds are lowered then noise
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SYSTEM: Data and Voice Integration System (DAVIS06)

<m0

Signals
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clkd

txd
txv
mev
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rcv -
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rcvabs-

vmcdly-
dmcdly-

vtrig -
dtrig -

502 duty cycle square wave clock for voice circuit.

50% duty cycle square wave clock for data circuit.

NRZ transmitted data.
NRZ transmitted voice.
Manchester encoded voice.
Manchester encoded data.

Minus line multiplexer output
Plus line multiplexer output

Trinary waveform received over wires
Reconstructed manchester voice signal (in rcvr)

Absolute value of rcv signal.
Reconstructed manchester data signal (in rcvr)

Vmc signal delayed a few DT's
Dmc signal delayed a few DT's

Gives a pulse for every rising/falling edge of vmc
Gives a pulse for every rising/falling edge of dmc

Sample clock used to recover NRZ voice signal
Sample clock used to recover NRZ data signal
NRZ voice signal

NRZ data signal

AL: clkv,txv,clkd,txd,mcv,mcd,minus,plus,recv,clk,

vme,vmedly,vtrig,veclk,vekbar,vrev,

rcvabs,dmc,dmedly,dtrig,dclk,dckbar,drev,

highsg,lowsig,lvclk,ldclk,cmpv,cmpd,chanin
SIZE: 32000

Pg 81



Pg 82

REAL tbv,tbd,vrate,drate,rt,zeropi,vltl,vhtl,
$ tmrpct,chcf,chbw,chgain,slewrt,high,low,ref,dltl,
$ dhtl,dtmr,vtmr,drvlivl,ve_time(10),de_time(10),

$ start,stop,simbw,vang
INTEGER nstv,nstd,nsh,nbits,dly,order,lowpas,vtimer,deltaP,
$ dtimer,derr,verr,chordr,ist,is2,isv,isd,i,j,lagpct,lag

CHARACTER*40, pname, simnam
DEFAULT: lowpas=1,zeropi=0.0

CALCULATE:

read *,pname,simnam

if (simnam.ne.'DAVIS06') then
print *,'## Incorrect simulation name in data file.'
stop
end if

read *,pname,simbw

read *,pname,start,stop
read *,pname,high,low,ref
read *,pname,vltl,vhtl
read *,pname,dltl,dhtl
read *,pname,drvlvl

read *,pname,vrate,drate
read *,pname,vtmr,dtmr
read *,pname,isv

read *,pname,isd

read *,pname,chbw

read *,pname,chordr

read *,pname,chgain

read *,pname,deltaP

vrate * 1000.0
drate * 1000.0

vrate
drate

tbv
tbd

.0/vrate
1.0/drate

nun
—

dt = 1.0/simbw

tstart = start/1.0eé6
tstop = stop/1.0e6

vtmr / 100.0
dtmr / 100.0
vtimer = nint(vtmr*tbv/dt)
nint(dtmr*tbd/dt)

(=
ct
[
E
o
la}
n i

————




is2 = isd

vang = 0.

chbw = chbw * 1.0eb

rt = 1.0/(2.0%chbw)
slewrt = (high~low)/rt
chef = 0.0

-—

lace all SYSTID "VARY" loops before the error counters.

P
They must be reset before every run.

VARY: lagpct = 5,75,deltaP

lag = int((lagpct)/100.%tbd/dt)
print *,'lagpct',lagpct,'lag',lag

isv = is1

isd = is2

derr = 0

verr = 0

do i=1,10
ve_time(i)
de_time(i)
end do

non
oo
[ R )

Main system model begins here.

SIMULATE:
highsg = high
lowsig = low

$

Manchester encoded voice source.
null > sq(vrate,vang) > clk
clk > delay(lag) > clkv
clkv = (clkv*0.5+40.5) * high
clkv > ranpls(high,low,ref,is1) > txv
clkv,txv > xor(high,low,ref) > mev

Manchester encoded LAN data source.
null > sq(drate,zeropi) > clkd
clkd = (clkd*0.5+0.5) * high
clkd > ranpls(high,low,ref,is2) > txd
clkd, txd > xor(high,low,ref) > mcd

Multiplexer.
mcv,mcd,lowsig,highsg,lowsig,lowsig >
mplexr(drvlvl,low,ref) > minus,null
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mcv,mcd,lowsig,lowsig,lowsig,highsg >
mplexr(drvlivl,low,ref) > plus,null

receiver
chanin = (plus - minus)*0.48

Channel model
chanin > butwth(chordr,lowpas,chef,chbw,chgain) > rcv
rev = rev * 2.0

Demultiplex the voice channel.
rcv > schmitt trigger(high,low,ref,vltl,vhtl) > vmc

Perform manchester decode on recovered voice stream.

vmec > delay(dly) > vmedly

vmc,vmcdly > xor(high,low,ref) > vtrig

vtrig > timer(high,low,ref,vtimer) > vckbar,vclk
highsg,highsg,vclk,vmc >d flip flop(high,low,ref)> vrecv,null

Voice channel error measurements.
Compare transmitted and received
NRZ streams on the falling edge of the tx clock.

txv,vrcev > xor(high,low,ref) > cmpv

if ((lveclk.gt.ref).and.(clkv.le.ref).and.(cmpv.gt.ref)) then
verr=verr+1
if ((verr.le.10).and.(verr.gt.0)) ve_time(verr)=time

end if

lveclk = clkv

Demultiplex the LAN data.
rcvabs = abs(rcv)
rcvabs > schmitt trigger(high,low,ref,dltl,dhtl) > dmc

Perform manchester decoding on recovered LAN data.
dmc > delay(dly) > dmcdly
dmc,dmcdly > xor(high,low,ref) > dtrig
dtrig > timer(high,low,ref,dtimer) > dckbar,dclk
highsg,highsg,dclk,dmec >d flip flop(high,low,ref)> drcv,null

Data channel error measurements.
Compare transmitted and received
NRZ bit streams on the falling edge of the transmit clock.




A~ <o 4 O ©»r N LR - R - A N W

A O

write(i$out,3) vtmr*100.0,dtmr*100.0

format(2x,
'#i## Manchester decoder timers (% of bit time )',/,
2x, " Voice = ',f4.1,'%, Data ',£f4.1,'%',/)

write(i$out,4) slewrt/1.0e6,rt/1.0e~9,chordr,chbw/1.0e6,chgain

format(2x,'### Channel Model parameters',/,

2x, "' Slew rate = ',f5.1,' (volts/micro-sec)’',/,
2x," Rise time = ',£5.1,' (ns)',/,

2x, ' Filter order = ',i1,/,

2x, ' Bandwidth = ',f5.2,' (Mhz)',/,

2x," Channel gain = ',f5.3,/)

write(i$out,5) dltl,dhtl

format(2x, '### Schmitt trigger levels in data circuit.',/,
2x, " Low level ',£5.2," (volts)',/,
2x," High level ',£5.2," (volts)',/)

write(i$out,6) vltl,vhtl

format(2x, '### Schmitt trigger levels in voice circuit.',/,
2x,"' Low level ',£5.2,' (volts)',/,
2x," High level ',£5.2,' (volts)',/)

write(i$out,7) high,low,ref
format(2x, '### Logic levels for signals ',/,

2x, " High level outputs = ',£f5.2,/,
2x,"' Low level outputs = ', £f5.2,/,
2x,"' Reference level = ',£5.2,/)

write(i$out,9) drvlivl
format(2x, '### Line driver high output voltage = ',£3.1,
' (volts)',/)

write(i$out,10) isv,isd
format(2x, '### Random number seeds: Voice =',i15,
' Data = ',i15,/)

write(i$out,11) lagpct,float(lagpct)/100.*tbd*1.0e9,vang
format(2x, '### Voice to Data clock lag = ',I3,
' % of Data bit time',/,
2x,’
2x, "'

',£7.2,' (ns)',/,

END: davis

',£6.2,' (degrees)',/)

——
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A.2 DAVISO7

R N R S S R et S S s b RS 2 S A

+ +
+ DAVISO7 +
+ +

T T o g A L T 1 VW ar A S W A AT RS AE N S S A SR AP oS
SYSTEM: Data and Voice Integration System (DAVISO07)

Signals

clkv - 50% duty cycle square wave clock for voice circuit.
clkd - 50Z% duty cycle square wave clock for data circuit.

txd NRZ transmitted data.

txv NRZ transmitted voice.

mcv - Manchester encoded voice.
mcd Manchester encoded data.

minus - Minus line multiplexor output
plus - Plus line multiplexor output

chanin - plus - minus signals. Input to transmission line
rev - Channel output.

vme - Reconstructed manchester voice signal (in rcvr)

rcvabs- Absolute value of rcv signal.
dmc - Reconstructed manchester data signal (in rcvr)

vmedly - Vmc signal delayed a few DT's
dmcdly - Dmc signal delayed a few DT's

vtrig - Gives a pulse for every rising/falling edge of vmc
dtrig - Gives a pulse for every rising/falling edge of dmc

(]
i
1]
]
]
]
]
]
(]
i
1
]
t
]
]
1
]
1
]
]
1
i
t
]
t
]
]
i
t
i
t
)
)
1
]
}
¥
1
(]
]
]
)
)
)
]
]
t
)
]
)
]
1
]
]
]
t
]
:
' velk - Sample clock used to recover NRZ voice signal
! dclk - Sample clock used to recover NRZ data signal
! vrcv - NRZ voice signal

H drcv - NRZ data signal

)

t

REAL: clkv,txv,clkd,txd,mcv,mcd,minus,plus,rcv,txddly, txvdly,
$ vmc,vmedly,vtrig,velk,vekbar,vrev,diff, trfout,cblout,
$ rcvabs,dmc,dmedly,dtrig,dclk,dckbar,drcv,
highsg,lowsig,lvclk,ldclk,cmpv,cmpd,chanin

SAVE [davis07] rcv

VSIZE: 32000

REAL tbv,tbd,vrate,drate,rt,zeropi,vitl,vhtl,length,

$ tmrpct, trnfcf, trnfbw,gain,slewrt,high,low,ref,1tl,

.




$ htl,dtmr,vtmr,drvlvl,ve_time(10),de_time(10),

$ start,stop,simbw,vang,flotx,fhitx,florx,fhirx

INTEGER nstv,nstd,nsh,nbits,dly,order,lowpas,vtimer,hipass,
$ numpts,gauge, lag,

$ dtimer,derr,verr,chordr,is1,is2,1,j,
$ gaug19,gaug22,gaugs4,gaugb

DEFAULT: gaug19=1,gaug2l2=2,gaug24=3,gaug2b=4,
$ lowpas=1,hipass=2,zeropi=0.0

CHARACTER*18 filnam,rdwrit

CHARACTER*40 pname,simnam

CHARACTER*8 cable(4)

Data (Cable(i),i=1,4)

$ /'19 gauge','22 gauge','24 gauge', '26 guage'/

OO0000000000MOOOMNOININOON0O0000
CALCULATE:

read *,pname,simnam

if (simnam.ne.'DAVIS07') then
print *, '## Incorrect simulation name in data file.'
stop
end if

read *,pname,simbw

read *,pname,high,low,ref
read *,pname,vitl,vhtl
read *,pname,ltl,htl
read *,pname,drvivl

read *,pname,vrate,drate
read *,pname,start,stop
read *,pname,vtmr,dtmr
read *,pname,filnam
read *,pname,rdwrit

read *,pname,flotx,fhitx
read *,pname,florx,fhirx
read *,pname,gauge

read *,pname,length

read *,pname,is1,is?
read *,pname,lag

= vrate * 1000.0
= drate * 1000.0
tbv = 1.0/vrate
1.0/drate
vang = zeropi
dt = 1.0/simbw
tstart = start/1.0eb
tstop = stop/1.0eéb

vtmr = vtmr / 100.0
dtmr = dtmr / 100.0
vtimer = nint(vtmr*tbv/dt)
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dtimer = nint(dtmr*tbd/dt)
dly = 5
derr =
verr =
numpts

noo

4096

BEGIN

SIMULATE:

-

¥

high
low

highsg
lowsig

Sources

Voice

null > sq(vrate,vang) > clkv

clkv = (clkv*0.5+0.5) * high

clkv > ranpls(high,low,ref,is1) > txv
clkv,txv > xor(high,low,ref) > mcv

LAN data

null > sq(drate,zeropi) > clkd

clkd (clkd*0.5+0.5) * high

clkd > ranpls(high,low,ref,is2) > txd
clkd,txd > xor(high,low,ref) > mcd

Multiplexer
mcv,mcd,lowsig,highsg,lowsig,lowsig >

mplexr(drvlvl,low,ref) > minus,null

mcv,mcd, lowsig,lowsig,lowsig,highsg >

mplexr(drvlivl,low,ref) > plus,null

Channel modeling: Transformer -> twisted pair -> Transformer

chanin = (plus-minus)¥*.48
chanin >
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chanl(rdwrit,filnam,numpts,flotx,fhitx,florx,fhitx,gauge,length)

> rev

Receiver front end - (Differential amp gain in hardware)

rev = rcv ¥ 2

voice decoding

rcv > schmitt trigger(high,low,ref,vltl,vhtl) > vmc

vmc > delay(dly) > vmcdly

vme,vmcdly > xor(high,low,ref) > vtrig
vtrig > timer(high,low,ref,vtimer) > veckbar,vclk

highsg,highsg,vclk,vmc > d flip flop (high,low,ref) > vrcv,null




voice channel error measurements.
Compare transmitted and received
streams on the falling edge of the tx clock.

- e -

txv > delay(lag)} > txvdly

txvdly,vrev > xor(high,low,ref) > cmpv

if ((lvclk.gt.ref).and.(vclk.le.ref).and.(cmpv.gt.ref)) ti
verr=verr+1
if ((verr.le.10).and.(verr.gt.0)) ve_time(verr)=time

end if

lvelk = velk

-

data decoding

rcvabs = abs(rcv)

rcvabs > schmitt trigger(high,low,ref,1tl,htl) > dmc

dmc > delay(dly) > dmecdly

dme ,dmcdly > xor(high,low,ref) > dtrig

dtrig > timer(high,low,ref,dtimer) > dckbar,dclk
highsg,highsg,dclk,dmec > d flip flop (high,low,ref) > drev,nu

data channel error measurements.
Compare transmitted and received
streams on the falling edge of the transmit clock.

- -

txd > delay(lag) > txddly

txddly,drev > xor(high,low,ref) > cmpd

if ((ldclk.gt.ref).and.(dclk.le.ref).and.(cmpd.gt.ref)) then
derr = derr+1
if ((derr.gt.0).and.(derr.le.10)) de_time(derr)=time

end if
ldcik = dclk
CALCULATE:

write(i$out,99) simnam
99 format(ix,/,

$ 2x, "#HH# ' ,a40,/,

$ 2x,' This system attempts to model the channel using a',/,
$ 2%, cable impulse reponse and convolving it with the',/,
$ 2x,’ input signal. ',/)

write(i$out,98) verr,nint(vrate*tstop),derr,nint(drate*tstop)
98 format(2x,'### Error counts ~ Ignore if signal delays are not',
$ ' considered',/,
$ 2x, ' Voice errors: ',i4,' in ',i4,' bits',/,
$ 2%, Data errors: ',i4,' in ',i4,' bits',/)
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if (verr.gt.0) then
1=10
if (verr.lt.10) i=verr
write(i$out,97) (ve_time(j)*1.0e6,3j=1,1i)
end if

format(2x, '### Voice error times of occurrence (micro-sec)',/,
2x, "' ',10(£6.1,1x),/,7/)

if (derr.gt.0) then
i=10
if (derr.1t.10) i=derr
write(i$out,96) (de_time(j)*1.0eb6,j=1,1)
end if

format(2x, '### Data error times of occurence (micro-sec)',/,
ZX,’ ',10(f6.1,1X),/,/)

write(i%out,95) 1.0/(dt*1.0e6)
format(2x, '### Simulation bandwidth = ',£f7.3,' (Mhz)',/)

write(i$out,1) vrate/1000.0,drate/1000.0
format(2x, '### Source rates',/,

2x, "' Voice (kpbs)',f6.1,/,

2x, " Data (kpbs) ',f6.1,/)

write(i$out,3) vtmr*100.0,dtmr*100.0
format(2x, '### Manchester decoder timers (% of bit time )',/,
2x, "' Voice = ',f4.1,'%, Data ',f4.1,'%',/)

write(i$out,4) flotx,fhitx,florx,fhitx,length,cable(gauge)
format(2x, '### Channel Model parameters',/,
2x,"' Transformer bandpass filter cutoff frequencies',/,
2x, ' Transmit = ',e10.3,', ',e10.3,/,
! Receive = ',e10.3,', ',e10.3,/,
2x, " Cable length = ',f5.1,' (feet)',/,
2x,' Cable wire is ',a,/)

write(i$out,5) 1tl,htl

format(2x,'### Schmitt trigger levels in data circuit.',/,
2x, " Low level = ',f5.2,' (volts)',/,
2x,"' High level = ',f5.2,' (volts)',/)

write(i$out,6) vitl,vhtl

format(2x,'### Schmitt trigger levels in voice circuit.',/,
2x," Low level = ',f5.2,' (volts)',/,
2x, "' High level = ',f5.2,' (volts)',/)

write(i$out,7) high,low,ref
format(2x,'### Logic levels for signals ',/,
2x,' High level outputs = ',£f5.2,/,




JRE—

3 2x, "' Low level outputs = ',f5.2,/,
3 2x,"' Reference level = ',£5.2,/)
write(i$out,9) drvlvl
9 format(2x,
$ '### Line driver high output voltage = ',f3.1,' (volts)',/)

write(i$out,10) is1,is2
10 format(2x,'### RANPLS seeds: IS1 = ',i11,', 182 = ',i11,/)

END: Data and voice integration system
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A.3 TWISTED PAIR CHANNEL

¥zosz==sssIISsszTs==s ======= EEEE T L =====s==szssSszz=s
* NAME: CHANL AUTHOR: Tim Davis DATE: Jun,86
B e e et e o o e e e e i 2t s i o e e

% PURPOSE: This model simulates a channel consisting of two

* transformers and a twisted pair transmission line.

* The signal enters a transformer, travels through the

* transmission line and finally leaves through another transformer.
* The transformers are modeled as bandpass filters while

* the transmission line is determined by an exponentially based
* transfer characteristic. The primary twisted pair constants

* R,L,G,C and Length are the parameters used to specify

* the transmission line properties. Note the general case

* where R,L,G and C very with frequency is taken into acount.

* The final baseband transfer characteristic is obtained

* by multiplying all the transfer characteristics together.

* Next, the inverse FFT is taken to get the channel's

* impulse response. The channel output is then found by

* convolving the impulse response with the channel input signal.
* The convolution is implemented using the tapped delay

* line model NEWTAP. The impulse response is saved in a

* file for future usage.

* The transfer function is calculated from -1(2*dt) to 1/(2*dt).
* To perform the discrete convolution, the impulse response must be
* time shifted to the center of the window, resulting in an

* arbitrary time delay in the ouput signal.

% _— —_— -— -
* PARAMETER DEFINITION

* NAME -  DESCRIPTION ! TYPE ! CLASS! RANGE

X cmmm—— e e e o o o o s e -— - ———
% rdwrit - read/write h(t) from/to disk file!cha*18 !input |'READ' or
* ' 'WRITE'

* filnam - filename to read/write h(t) to. {cha*18 }input

* (This file contains the impulse

* response)

* numpts - number of impulse resp. samples

]
1
]
1
H
1
] ]

] ]

[] [}

[] 1

linteger|

Also the number of transfer function | H
] 1

(] ]

] ]

t 1

]
1
1
]
)
)
1
[]
]
input |even<5000
]
1
]
]
]
1
]
]

*

* samples. (must be a composite # with

* max prime factor = 127)

% FlowTX,FhiTX - Bandpass cutoff freq for ireal*4 |input |>0<1.0/dt

* the transmit side transformer H :
'<1.0/(2*dt)

* FlowRX,FhiRX - Bandpass cutoff freq for |real*4 }input }>0<1.0/dt

* the receive side transformer H ‘
1<1.0/(2%dt)

* Gauge - Enumerated value specifying the |integer)input }1,2,3,4

%* cable gauge. 1=19gauge, 2=22gauge ! ' :

* 3 = 24gauge, 4 = 26gauge : : '

* Length - Length of the transmission line |real*4 |input | >0 feet

% e _—
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* subroutines required
* name ! description
0 o o o 2 e s G e 40 < S T S A T S . A . S W D S i et e T A a2 (R P A A S A St e R b OB T o
* getmax :
* fft H
* newtap '
]
¥ arshft H
* — — — _— -

MODEL:TX > CHANL(rdwrit,filnam,numpts,flotx,fhitx,florx,fhirx,gauge,
length) > RCV

integer maxh

parameter (maxh=5000)

complex: win, wout

complex h,gamma, txline,bandpass

real fiotx,fhitx,florx,fhirx,length,omega,freq,hdb,
realh(maxh),imgh(maxh),impres(maxh),delfrq,hmag

logical op,fstm

integer yes,no,ind,dep,gauge,gauge19,gauge22,gauge4,gaugel6,

' Funit,numpts,nhalf,i,mxindex,nshift

parameter (yes=0,no=1,gaugel19=1,gauge22=2,gauge24=3,gauge2b=4)

character*18 filnam,rdwrit

stack<i> init

calculate: *idddiicdddiosohdddedededoskdededededodedededededesdedededcd

if(init.eq.Yes)then
print *,'DEBUG: rdwrit = ',rdwrit
print *,'DEBUG: filnam = ',filnam
print *,'DEBUG: numpts = ',numpts
print *,'DEBUG: flotx = ',flotx
print *,'DEBUG: fhitx = ',fhitx
print *,'DEBUG: florx = ',florx
print *,'DEBUG: fhirx = ', fhirx
print *,'DEBUG: gauge = ',gauge
print *,'DEBUG: length = ',length

*

* Either Read or Generate (then write) the
% discrete transfer function
if(rdwrit.eq.'WRITE') then
if (numpts.gt.maxh)then
write(*,*)'%% Error in CHANL: NUMPTS > ',maxh
write(i$out,*)'%% Error in CHANL: NUMPTS > ',maxh

stop
end if
delfrq = 1/(dt*numpts)

nhalf = (numpts/2)+1
op = .true.

Funit=20

iy,




_——,-—‘*_

%* %

%
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do while(op)
Funit=Funit+1
inquire(unit=Funit,opened=op)
end do

op = .true.
Munit=21
do while(op)

Munit=Munit+1

inquire(unit=Munit,opened=op)

end do
open(unit=Funit,name='Frequency.tmp',status='unknown')
open(unit=Munit,name='Magnitude.tmp',status="'unknown')

Compute bandwith and geometric mean frequency
for the bandpass filter function for both TX and RX transformers.

Wotx = 2. * pi * sqrt(fhitx*flotx)
Btx = 2. * pi % (fhitx-flotx)
WOrx = 2. * pi * sqrt(fhirx*florx)
Brx = 2. * pi * (fhirx-florx)

Compute the frequency domain transfer function values.

do i=1,nhalf
freq = (i-1)*delfrq
omega = 2.0 * pi * freq

h = BandPass(Btx,W0tx,omega)
h = TXline(omega,gauge,length)
h = h * BandPass(Brx,W0rx,omega)

realh(i) = real(h)

imgh(i) = aimag(h)

hmag = cabs(h)

if (hmag.lt.1.0e-6) then
hdb = -120.0

else
hdb = 20.0%*1log10(hmag)
end if

if ((i.gt.1).and.(i.1le.668)) then
write(Funit,*) freq
write(Munit,*) hdb
end if

end do

* we have the transfer funtion from 0 to fs/2, now create from
* fs/2 to fs.(real part has even sym, img part has odd sym).

do i=1,nhalf-2
realh(nhalf+i) = realh(nhalf-i)
imgh(nhalf+i) = -imgh(nhalf-i)
end do
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* take inverse FFT of transfer function and scale as neccessary
call fft(realh,imgh,numpts,numpts,numpts,-1)
do i=1,numpts
realh(i) = realh(i)/numpts
end do
%
* resulting impulse response is real, therefore only look at realh.
* Shift impulse response so that the max value is in the center
* of the window (nhalf*dt). This is to prevent the impulse
* response from being split into 2 non-adjacent pieces.
*
call getmax(realh,numpts,mxindx)
* now that we have the index of the max value of the fir, determine
* the number of units to shift all fir samples.
nshift = nhalf-mxindx
* shift
call arshft(realh,numpts,nshift,impres)
* write table out to a formated data file for NEWTAP
* look for an unused logical unit number
%
op = .TRUE.
lun = 20
do while ( op )
lun = lun+1
inquire(unit=lun,opened=op)
enddo
%
* we have an unused logical unit number. Open a formatted file
* and attach the filname to the logical unit number
%
open(unit=lun,name=filnam,status="'new',
& form='formatted',err=750)
goto 760
4
* output error message if OPEN aborts on error
%
750 write(*,*)'%% Error in CHANL when opening ',
. FILNAM,' for output.'
stop
760 continue
%
* write out data to NEWTAP since LUN opened successfully
*
write(lun,*)numpts
do iz=1,numpts
write(lun,*)impres(i),’ ',0.0
end do

rewind lun
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else
%
* if rdwrit=read, then attach a lun to the file,
* then call NEWTAP
if(rdwrit.ne. 'READ') then
write(*,¥%) '%% rdwrit defaulted to READ in CHANL'
end if
*
* look for an unused logical unit number
*
op = .TRUE.
lun = 20
do while ( op )
lun = lun+1
inquire(unit=1lun,opened=op)
enddo
%*
* we have an unused logical unit number. Attach to file
%
open(unit=lun,name=filnam,status='o0ld',form='formatted’
& ,readonly,err=850)
goto 860
*
* write error message when OPEN aborts on an error.
*
850 write(*,%)'%% Error in CHANL when opening ',
& FILNAM, ' for input.'
stop
%
* Come here when OPEN is successful
860 continue
%
* End if READ or WRITE
end if
%
* End if INIT = YES or NO
end if
%
* NEWTAP accepts an argument for the logical unit for runtime input
* so we do NOT have to get this data into the standard runtime file
* (SYSTIDATA.DTA). The file that is read is the one generated above;
* ijie the impulse response.
%

simulate: CHANNEL ¥¥%¥dcdededdedksedeioveeddd

win = cmplx(TX,0.0)
win < NEWTAP(lun) > wout



rcv = real(wout)
%

* close the file with the runtime data for NEWTAP
%

if ( init .eq. YES ) then
close(unit=1un)
init = NO
endif

END: channel model

A.4 D FLIP FLOP

MODEL: clr,pr,ck,d > d flipflop(high,low,ref) > gq,qbar

This is a D flip flop model similar to the 7474 TTL unit

Written by Tim Davis

Input nodes-

]
]
' clr - reset q output to low.
: pr - set q output to high.
' ck - clock
H d - data

REAL: clr,pr,ck,d

output nodes:
q - Data output
gbar - complementary output of gq

REAL: q,qgbar

Parameters

]
]
)
'
i
H high - high level output signal value

: low - low level output signal value

H ref - reference level for logic value determination
'

E

REAL high,low,ref

{ Internal real variables.

H holdq - Holds latest value of Q output

: lastck - Holds last value of clock. used for
H detecting rising edge of clock.

1

REAL holdq,lastck
STACK <R> holdq,lastck
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i Begin simulation

SIMULATE:
if ((pr.le.ref).and.{clr.gt.ref)) then
holdg = high

else if ((pr.gt.ref).and.(clr.le.ref)) then
holdg = low

else if ((pr.le.ref).and.(clr.le.ref)) then
write(i$out,*) '%% FLIP FLOP: clear=preset=low is invalid.'

else

On a rising edge of the clock load D -> Q

if ((lastck.le.ref gbar = low
end if
lastck = ck

END: of D FLIP FLOP

A.5 4-1 MULTIPLEXER

MODEL: b,a,s0,s1,s52,s3 > mplexr(high,low,ref) > y,ybar

This model is a 4 to 1 digital multiplexor.

The two input signals b and a select one of the

four inputs sO thru s3 to be regenerated and placed

on the output line y. (ybar is the complementary output)
Written by Tim Davis

This model modified Dec 20, 1985
This model tested XXX XX, XXXX

i Input nodes

! b ~ MSB of signal selector

H a - LSB of signal selector

' s0 thru s1 - input signals to be multiplexed
]

[}

E

REAL: b,a,s0,s1,s2,s3

! Output nodes

: y - regenerated signal selected from
H sO thru s1 by binary number 'ba'
! ybar - complementary output of vy.

]

L]
REAL: y,ybar

Parameters

]

]

H high - high level output value
: low - low level output value
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ref - reference level used for logic value determination

]
t
I
REAL high,low,ref

]
]

i Local vars

REAL s(0:3)
INTEGER i,j,sel

]
[}
'\ Begin
SIMULATE:
i=0
if (a.gt.ref) i
j=0
if (b.gt.ref) j
sel = j¥*2+i
5(0) s0
s(1) s1
s(2) s2
s(3) s3
v = s(sel)
if (y.gt.ref) then
y = high
ybar = low
else
vy = low
ybar = high
end if

[]]
-

]
-

END: mplexr

A.6 SCHMITT TRIGGER

MODEL: sigin > schmitt trigger (high,low,ref,l1tl,htl) > sigout

This model emulates a 7414 schmitt trigger inverter. IE it has
hysteris on the inputs to reject noise.

This model modified on Dec 19, 1985
This model verified on xxx xx, xxxx

The transfer characteristic appears as follows.

high
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*NOTE*

The first time SCMITT TRIGGER is called the value of lstout
will be zero because it is a stack variable.

This causes the output sigout to be 0.0 if sigin is

greater then 1tl. This is not the way a real device

would operate since any applied voltage would have to

start from 0.0 volts and go up, thus sigout would be
initialy asserted. Don't trust your output until

you are sure what the state of the trigger is.

AL: sigin,sigout

Parameters

high - high level output signal value

low - 1low level output signal value

ref - unused (reference level for logic determination)
1tl - The low trigger level.

htl - The high trigger level.

AL high,low,ref,ltl,htl
INTERNAL real variables

lstout ~ sigout from last call

AL lstout
ACK <real> lstout

BEGIN
MULATE:
sigout = 1stout
if ((lstout.eq.high).and.(sigin.gt.htl)) then
sigout = low
else if ((lstout.eq.low).and.(sigin.lt.1tl)) then
sigout = high
end if

l1stout=sigout

END: schmitt trigger
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A.7 TIMER
MODEL: sigin > timer(high,low,ref,timect) > q,gbar

This model simulates the operation of a one shot.

When the input signal sigin changes from less then

the reference level to greater then the reference level,
q is set high for timect®*dt seconds.

When thethe timer is "on", the value of sigin is ignored
so retriggering is not possible.

Qutbar is the complementary output of q.

This model modified Dec 19, 1985
This model tested XXX XX, XXXX

If timect < 1 then the program is aborted

[ I R L L Rl T

timect - Integral number of DT's to keep g at high level
after rising edge of sigin.

REAL: sigin, q,gbar
1
]
! Paramters
[}
t
H high - output level when "signal" > ref
! low - output level when "signal" < ref
H ref - reference level used for logic determination
'
I
]
]
]
[]

)
REAL high,low,ref
INTEGER timect

Internal variables

i

[}

'

! cntr - Counts DT's while timer is on.

! When O it means timer is off.

: lstin - Value of sigin from last call to model
]

REAL 1stin
STACK <real> lstin
INTEGER cntr

STACK <integer> cntr

{ Begin
CALCULATE:
If (timect.1lt.1) then
print *,'}} Timer aborted. Timect < 1'
stop
end if
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SIMULATE: timer
if (cntr.gt.0) then
q = high
gbar = low
cntr = cntr + 1
if (cntr.eq.timect) cntr = 0

i timer is off. Check for rising edge
else
if ((lstin.le.ref).and.(sigin.gt.ref)) then
cntr = 1
q = high
gbar = low

: No rising edge, keep timer off.
else
q = low
gbar = high
end if
end if
lstin = sigin

END: timer

A.8 RANDOM PULSE GENERATOR

MODEL: clock > ranpls(high,low,ref,iseed) > rout

This model generates a random pulse sequence using

the uniform distribution random number generator

RAN(i) in VAX-11 fortran. A new pulse is started on the rising
edge of clock and terminates one DT before the following
rising edge of clock. This guarantees that the clock and

data conincide.

This model modified on Dec 27, 1985
This model verified on Dec 27, 1985

Input Signal

clock - Signal which follows the logic conventions
dictated by ref and high, low

- - - = e e -

REAL: clock

Output signal

rout - Random pulse sequence with pulse widths
equal to period of clock signal

-
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REAL: rout
Parameters
high - Logic high output value
low - Logic low output value
ref - Reference level for determining logic level.

sig.gt.ref is high, sig.le.ref is low
iseed - Random number seed for the RAN() function.
*%% WARNING ¥¥*%*
Do not call RANPLS with a constant.
Always use an integer variable;
It is intended that a value be returned.

- — . an e -

!
REAL high,low,ref
INTEGER iseed

]

! Internal variables

1stclk - The value of clock from the last call to RANPLS()
hold - The output value for ROUT. Maintained for entire
bit time of clock until a new rising edge occurs.

REAL 1stclk,hold
STACK <R> 1lstclk,hold

SIMULATE: random pulse source
if ((1stclk.le.ref).and.(clock.gt.ref)) then
if (ran(iseed).ge.0.5) then
hold = high
else
hold = low
end if

end if

rout

= hold
lstclk =

clock
END: random pulse source

A.9 ABSOLUTE VALUE

MODEL: in > abs value > out
REAL: in,out

SIMULATE:
out = abs(in)
END:



A.11 TRIMPOWER.FOR

program TrimPower
c
¢ This program trims away a user specified amount
c of power from the tails of impulse reponses generated
c by the SYSTID simulation DAVISO7.TXT

c
real max,data,totalpower,tailpower,epsilon
dimension data(4096)
integer samples,i,position,front,rear
character*50 file,trimfile
logical trim
totalpower = 0.
max = -1.0e32
print *,'> Enter impulse response file name'
accept 1,file

1 format(a50)
open(unit=1,name=file,access='sequential’,

& status='Unknown')

read(1,%) samples
do i=1,samples
read(1,%*) data(i)
totalpower = totalpower + data{(i)*data(i)
if (data(i).gt.max) then
max = data(i)
position = i
end if

end do

close(unit=1)
print %, '* Maximum value occurs at ',position
print *,' Maximum value is ',max

trim = . true.
do while (trim)
print *,'> Enter percentage tail power to remove
accept *,epsilon
front = 0
rear = samples + 1
tailpower = 0.
do while (tailpower/totalpower*100.0.le.epsilon)
rear = rear - 1
front = front + 1
tailpower = tailpower +
& data(front)*data(front)+
& data(rear)*data(rear)
end do
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c err on the side of removing to little power.

&

tailpower = tailpower - data(front)¥*data(front)-
data(rear)*data(rear)

rear = rear + 1

front = front -1

print *,'* The impulse response is being trimmed'
print *,' to samples ',front,'to',rear,
': count=',rear-front+1
print *,'* Total power left is ',
100.~-tailpower/totalpower*100.
print *,'> Do you want to try another ',

"tail power trim percentage?'

print *,' enter .true. or .false.'
accept *,trim
end do

print *,'> Enter name of file to store trimmed ',
'impulse response to'
accept 1,trimfile
open(unit=2,name=trimfile,access='sequential',
status='unknown')
write(2,2) rear-front+1,100.-epsilon,file
format(1x,i11,10x, 'This file contains ',f4.1,
'% power from file ',a50)
do i=front,rear
write(2,3) data(i),O0.
end do
format(1x,e14.7,4x,e14.7)
close(unit=2)

stop
end
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A.12 BANDPASS.FQR

(2]

OO0 00000000

complex function BandPass(B,W0,omega)

The transformers are modeled as second order butterworth
bandpass filters. The transfer function for each transformer
is obtained by transforming the normalized second order
butterworth lowpass filter transfer function

Hn(s) = 1/(s"2 + 1.4142%s + 1)
] 1

by substituting 's' with the 'p' given below.

p = WO/B * ( s/WO + WO/s)

complex P

real omega,B,W0

if (omega.lt.1.0e-6) then
BandPass = (0.0,0.0)

else

p = WO/B * (cmplx(0.,omega)/WO+w0/cmplx(0.,omega))
BandPass = 1.0/(p*p+1.4142%p+1)
end if

return
end
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C.

PARTS LOCATER

INTEGRATED CIRCUITS
location
Component Part Board Schematic
ID Number RowCol (Sheet,RowCol)
U1 7415163 C2 (1,B5)
U2 7415163 C1 (1,D5)
U3 7415162 B1 (1,F5)
U4 7415163 B1 (1,H5)
U5 7415163 A1 (1,35)
U6 741586 c2 (2,A2)
(4,A5)
U7 7418374 D2 (2,D3)
U8 7418374 D3 (2,07)
U9 7415163 D1 (2,H5)
U10 741504 C1 (2,H4)
(3,H4)
(4,K2)
(4,N2)
(7,B2)
(7,D2)
U1 741586 C3 (3,A2)
(4,B5)
U12 7418374 D2 (3,D3)
U13 7418374 D3 (3,D7)
U14 741s163 D1 (3,H6)
U15 7418153 B2 (4,G4)
U16 LM318 B3 (5,C6)
U17 741s07 B2 (4,32)
(4,K3)
(4,M2)
(4,N3)
U18 LM318 B4 (5,H6)
U19 741514 A3 (5,L8)
(5,68)
(6,B2)
(6,B3)
(6,F2)
(6,F3)
U20 Discarded
U21 741586 B3 (6,C4)
(6,G4)
(7,A3)
(7,D3)
U22 7415123 B3 (6,G6)
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INTEGRATED
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CIRCUITS

location
Component Part Board Schematic
ID Number RowCol (Sheet,RowCol)
U023 741874 A3 (6,C8)
(6,68)
U24 741s74 Cé4 (7,A5)
(7,D5)



MISCELLANEOUS

COMPONENTS

location
Component Part Board Schematic

ID Number RowCol (Sheet,RowCol)

XTAL CC0100A:20.48 A1l (1,32)

HDA1 header C3 (1,E8)

(6,A6)

(6,E6)

(8,14)

S1 DPDT Front Panel (4,C2)

S2 DPDT Front Panel (4,62)

S3 DP 6 throw Front Panel (8,H7)

(8,K7)

LED1 Red LED Front Panel (8,M6)

T1 PE64352 D5 (4,L8)

T2 PE64352 D5 (5,C3)

J1 RJ11 Front Panel (4,L9)

J2 RJ11 Front Panel {(5,C1)

J3 DB25 Front Panel (8,N3)



RESISTORS

location
Component Part Board Schematic

ID Number RowCol (Sheet,RowCol)
R1 1k C2 (1,B9)
R2 1k Cc2 (2,89)
R3 50 D5 (4,K7)
R4 100 D6 (5,C2)
R5 1k B5 (5,B4)
R6 2.2k B4 (5,B6)
R7 1k B4 (5,b4)
R8 2.2k B4 (5,D4)
R9 2.2k B4 (5,F4)
R10 2.2k B4 (5,F6)
R11 2.2k B4 (5,H4)
R12 2.2k B4 (5,14)
R13 50 D5 (4,N6)
R14 1k A3 (5,L3)
R15 Unused
R16 10k A3 (5,L2)
R17 130k A3 (5,N3)
R18 10k Ab (5,L4)
R19 1k A4 (5,L6)
R20 12k A5 (5,N4)
R21 unused
R22 5k pot C3 (8,14)

(6,A6)
R23 470 A7 (8,M4)
R24 1k A2 (4,34)
R25 1k A2 (4,K4)
R26 1k A2 (4,M2)
R27 1k A2 (4,N4)
R28 20k pot Ab (8,16)
R29 20k pot Ab (8,17)
R30 20k pot A6 (8,17)
R31 5.6k A5 (8,H8)
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CAPACITORS

location
Component Part Board Schematic
1D Number RowCol (Sheet,RowCol)
C1 4.7pf B5 (5,A6)
Cc2 4.7pf B4 (5,E6)
C3 4.7pf B4 (5,D6)
C4 4.7pf B4 (5,16)
C5 1000pf Cc3 (6,A6)
(8,14)
Ccé6 1000pf C3 (6,E6)
(8,15)
Cc7 0.1uf D1
C8 0.1uf D2
C9 0.1ut Bypass Cap
Cc10 0.1uf
c11 0.1uf
c12 0.1uf
C13 0.1uf
Ccl4 0.1uf B3 (5,C7)
C15 0.1uf B3 (5,G7)
C16 0.1uf A2 (4,J6)



SEMICONDUCTORS

location
Component Part Board Schematic
ID Number  RowCol (Sheet,RowCol)
D1 B5 (5,H2)
D2 B5 (5,G2)
D3 B5 (5,G3)
D4 B5 (5,H3)
Q1 2N3904 A3 (5,L3)
Q2 2N3904 A3 (5,L6)
Q3 2N3904 A2 (4,J5)
Q4 2N3904 A2 (4,K5)
Q5 2N3904 A2 (4,M5)
Q6 2N3904 A2 (4,N5)
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D. SIGNAL LOCATER

SIGNAL GLOSSARY
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Location
Signal Origin Board Schematic

Name IC/Pin Row Col (Sht,Grid) Description

CLK. 64 U1/14 c2 (1,A5) 64 kHz square wave used
to clock voice PN
sequence generator.

CLK. 128 uz2/11 c1 (1,C5) 128 kHz square wave used
to clock voice PN
sequence generator.

CLK. 256 u2/12 C1 (1,D5) 256 kHz square wave used
to clock voice PN
sequence generator.

CLK. 160 U4/12 B1 (1,H5) 160 kHz square wave used
to clock voice PN
sequence generator.

CLK. 20480 XTAL/8 A1 (1,J32) 20.48 MHz master system
clock.

DATA.CLK U2/14 c1 (1,D5) 1024 kHz square wave
used to clock data PN
sequence generator.

VOICE.CLK HD1/9 Cc3 (1,E8) This is one of four
clock signals
(64,128,160,256) that
drives the voice PN
sequence generator.

MAKE.A.BIT U9/15 D1 (2,H6) Set high when a string
of 14 zeroes is about to
occur in the voice PN
shift register.

MAKE.B.BIT  U14/15 D1 (3,H6)



Signal
Name

Origin
IC/Pin

Location
Board
Row Col

Schematic
(Sht,Grid)

Pg 128

Description

PN.VOICE

PN.DATA

INT.MCV

INT.MCD

MINUS

PLUS

RCVSIG

RCVABS

R.MCD

R.MCV

U8/16

U13/16

U6/11

u11/11

U15/9

U15/7

U16/6

U18/6

U19/12

U19/2

D3

D3

c2

c3

B2

B2

B4

B3

A3

A3

(2,F8)

(3,F8)

(4,A5)

(4,B5)

(4,G6)

(4,G6)

(5,C7)

(5,67)

(5,G8)

(5,L8)

Set high when a string
of 14 zeroes is about to
occur in the data PN
shift register.

Pseudo random bit stream
clocked by VOICE.CLK.

Pseudo random bit stream
clocked by DATA.CLK.

Internal source (from
PN.VOICE) manchester
encoded.

Internal source (from
PN.DATA) manchester
encoded.

Output from DVM
multiplexer which goes
to negative input at
differential receiver.

OQutput from DVM
multiplexer which goes
to positive input at
differential receiver.

Recovered three level
DVM signal which needs
to be split into voice
and data.

Absolute value of RCVSIG
which yields data
stream.

Recovered manchester
encoded data stream.

Recovered manchester
encoded voice stream.
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Location
Signal Origin Board Schematic
Name IC/Pin Row Col (Sht,Grid) Description

D.TRIG U21/3 B3 (6,B5) Trigger pulses at edge
transitions of recovered
manchester data (R.MCD).

V.TRIG U21/6 B3 (6,F5) Trigger pulses at edge
transitions of recovered
manchester voice
(R.MCV).

D.CLK U22/12 B3 (6,C7) Recovered data clock for
sampling incoming
manchester (R.MCD) to
get NRZ data.

V.CLK v22/4 B3 (6,F7) Recovered voice clock
for sampling incoming
manchester (R.MCV) to
get NRZ voice.

DATA.BITS U23/8 A3 (6,C7) NRZ data bits recovered
from demultiplexed
manchester data.

VOICE.BITS U23/5 A3 (6,F7) NRZ voice bits recovered
from demultiplexed
manchester voice.

D.ERR U24/9 C4 (7,46) Signals an error found
in DATA.BITS.

V.ERR U24/5 C4 (7,D6) Signals an error found
in VOICE.BITS.



