The University of Kansas/

p Information and

' ~ Telecommunication
Technology Center

Technical Report

Emulation of RDRN on an ATM-Testbed and a
Comparative Evaluation of IP vs ATM

Syed Fazal Ahmad, Gary Minden and
Joseph Evans

ITTC-FY2000-TR-13380-08

September 1999

Project Sponsor:
Information Technology Office
of the
Defense Advanced Research Projects Agency

Copyright © 1999:

The University of Kansas Center for Research, Inc.,
2291 lrving Hill Road, Lawrence, KS 66044-7541.
All rights reserved.

Abstract

Multi-hop mobile wireless network (e.g. Rapidly Deployable Radio Networks, RDRN) is
an ideal technology to establish instant communication infrastructure for civilian as well
as military purpose. Before, such a network is actually deployed in the “real world”, it is
imperative to understand the behavior of the system in a large-scale network under
different scenarios. Hence, one of the purposes of this research was to design and
provide a controlled, repeatable and realistic environment over which the emulation of
the RDRN software could be performed. The second objective after the design of the
emulation environment was to do a comparative evaluation of IP vs ATM connectivity
between the nodes and to measure different performance metrics (throughput, time for
the network to converge and fraction of the emulation time for which connectivity could

be maintained).

Table of Contents:

ABSTRACT 2
ACKNOWLEDGMENTS 3
TABLE OF CONTENTS: 5
INDEX OF FIGURES: 10
INDEX OF TABLES: 12
CHAPTER 1 13
MOTIVATION & BACKGROUNDoccooiiiiicieeireecieetesereseresesesstassesssssessessssnsessosssnsensesessasenns 13
1.1 MOLIVALION & PUTPOSE ...coveeeeeeeneeieserecreriecniesreseressessesssssssesiesssasssrssesssesssessessesssesssesssssnsns 14

1.2 Rapidly Deployable Radio Network (RDRN}cccoconivveevciinenenineiieccreecceeceeeaeae 15
1.2.1 TtroduCtion™:ouoveoeeeiveeeceres et sae s sse st ss s st sanene 15

1.2.2 OVEIVIEW: .ottt sestiriesesseests et eee e se s s st saeesssssesssessnessessbuesbbonesosesnsessnenanes 16

1.2.3 RDRN System IMplementation:cccccvevvererreereerrerssesrneseessenssssnsesniessssssesseerseessassnns 17
1.2.3.1 RDRN HardWare:cocvvueerieririeneerineenienceerteeeessrescesesneseesresscsnenessessesssenees 17

1.2.3.2 RDRN SOftWATE: ...couerriiieriircnieiriereee et seevtseeneereassesiessssssssssostsessesnecnens 18

1.2.3.2.1 The Orderwire NetWork:.......c.ccoceerreveenneenenneeiienciieeee e e 18

1.2.3.2.2 The WATM NEIWOTK:evvemierenieiecnireeneecreetetsesreeesisss e siess st see e e 19

1.2.3.2.3 Wireless Multi-path Routing Protocol (WMRP)™ module:................e....... 21

EXAMPLE L.....ooeeieieiiiniieeeieeease e steseesias s stesvessasssessansbensssosessnesnsesasessnssessnesssasns 22

1.3 ROGUITEIMEHLScocmeeeieteceenieteeetsresnene et et stest et s eest et set st et et e aentene s e eanemmeass 24
CHAPTER 2 26
REQUIREMENTS AND DESIGN OF THE EMULATION ENVIRONMENTccocovviivveuieverenesene 26
2.1 Configuration Of the TeSDESvveceerereenneiiiecniinieeeetneseeeeeie st resaes 27

2.2 Identification of Requirements and Solutions to those Requirementscccocoeeuenenn. 28
2.2.1 Stage 1: Exchange of Information over the Orderwire...........ccocoevveinivneiiinnnnin 29

2.2.2 Stage 2: Establishing the Network Topolgy & High-Speed Connectivity................. 31

2.2.3 Stage 3: Creation/Exchange of Routing Information...........ccecceeveivenencnnncreccnnen, 34

2.3 Components of the Emulation ERVIFONMENLcccoveieecerrveeveininiinninissesiseosiessessnens 34
2.3.1. EMulation Manager........c..oeeeeeeeimeirieieneee et eeeneeeesssssssssrssasss s sbs s eons 35

2.3 2.1 VATM DIIVET ..ottt sttt st sttt et et st sa et et ann e s smennis 36
2.3.2.3 Orderwire MOAUIEccceviruiienirrieniecenieerentesteteeessesestessestesaesbassaresssessassasseenens 37
2.3.2.4 Routing MOGUIE........cvviieiirieerenisietertee et enre e s ssessestesbesraesassestnssnsnsansenses 37
2.3.2.5 An EXample NEtWOIK.......coveveiviivieieeriiiniesieieitessesereessessessesssssessessessessessssnsssens 38
CHAPTER 3 42
IMPLEMENTATIONooctiueeieieneereettetesteenenseeesssesseesssssesssesseesssssssssesssesnsessenssenssessenssesssessses 42
3.0 VATM (VIrtuQl ATM): .o eeseetevennsaenee e sense st ssee e saeste et et e e ssasiesnees 43
3.1.1 Protocol Stacks on the VATM.......c.cccoeiirininieniininreinininiiiniesccereecenneseneeseesssesees 44
3.1.1.1 SAR (Segmentation & Re-assembly):......cccceeerivernirrenrnncninrirceeneeeneseenns 44
3112 SAR + DLCiniiieiiiieiereteteee st siesese e asee et e sae et eseaesesees s saesassenens 45
3.1.1.3 SAR + QOS +DLC ...cooieiieictiiieieee e teeeatste st e steiretebtsbentesesses et eeneenenreas 45
BULLADLC .ttt ettt ettt ettt m et eat bt e st et e snseneeees 46

3.1.2 Data Structures for VATMcccooiviirrrecniceerrencreenneetesrerceesreestnesressessesssosses 47
3.1.3 VATM COmmMAnds.......c..coeeerirerrenieriieeererenreeeeentestesssesseees e seesneseesesesnessesnsosssnns 51

3.2 WMRP (Wireless Multi-Path Routing Protocol).............civerieerveenrencsennienssesiesnesnisssoees 52
3.2.1 Notation and ASSUMPHONST.............ooveuermirsisesinssessssenssssessse s senssessssessesssssens 52
3.2.2 Information maintained at each NOAe™ccovrrvierrevemeereisee e 52
3.2.3 Information exchanged among N0des™covrvrreerrrniirerererserserssssssssssessesesseeens 54
3.2.4 Processing an UPAAte™............cocoocveuienereeerersenssesssessesssessesses s ssssse s sassssessenses 54
3.2.5 Sending UPAAtest™ooceevimeireeeeeisesesesieses s ssssssasssssssssssssssssessssssss s sasesssssanees 55
3.2.6 Implementation of WMRDP............ccccioviivierinveenreneiniinreneereessenessiesssessesssesssesassnsess 55
3.2.6.1 Interaction between the Orderwire Module and the Routing Module................. 55
3.2.6.2 Threads in the Routing Module..........ccccvvecimeimenreinienreecccenenereeseeneiaenes 56
3.2.6.3 Changing the Kernel Routing Table.........ccccecenicvinenrinincncninccceenenenciees 57
CHAPTER 4 59
RESULTS ...oovtiiiiteeiiiieeerteeeeeserrreesstreessbeeestasessvesesssaessstsssssassessasessssasssnassssssassenstessnsessssrssasssssnses 59
Bo1 SCORATIO L...nnoonverrerirerrereiriniieieeteitr st st teae e ee st et esae st s st saasaae e e s e s s bt s bt s sassmesessbanssnsns 60
4.1.1 Ping RESUILS ..c..viiieiiieiiecciie et e et eve et s esabae s e s s s s e eeseaesbeessannesaers 61
4.1.2 ConnectiVity RESUILS ...c..oiuiiiiiiiiiiciiee sttt eeee st e eessaea e et e s e e essseesnnes 62
4.1.3 Throughput ReSUIEScceeviiiiiiiiicriceccteerrvesie st sreer e sesessssasssaesvesuresbnsbasssasaseansesnnes 65

B2 SCERATIO 2o vririess e steres et e s ta st st e st a e e et e a et et e besteshaatesaesressgasecones 69
4.2.1 PINZ RESUILS ..cevieviieie ittt ettt seie st et e s ste st e st e sara s tassnesnnnassnnessanes 71

4.2.2 Connectivity RESUILSccc.coivimiririeernieieieireeerccttetercst et ese e ee s e sessesenaes 72

4.2.3 Throughput RESULESc.coveviiiiiiriniiiiieriniieietrtneretsteese st estete s sesesessssessesensasanes 72
CHAPTER 5 75
CONCLUSIONS & FUTURE WORKocootriiivinieiniriiiiiiiniicii e eiescsestsnee e sesasassesens 75
5.0 CONCIUSTION. ...ttt st st bt sbsaeses s be e st sbe s s e essaneesesassasan 76
5.1.1 Emulation ENVITONINENEc.cccevirieuietrcereisieiseeresietsiesteset et e s saeseseestseseseesrannanesnes 76
S2ZTTIP VS ATM ottt et ettt v st bt st e sese s eneerem e e et eeeeres 76
5.2.2 SCAIADILILYccevereveereeieerieireistsee et et e et aes et e e b b e s st s et s s esseneennanes 77

5.2 FUBUEE WOFK.......oocimirieeeieeirisiisiestessesassestsssasessesesssassesaessansassessessastessanssssessessassessasssssnsn 77
5.2.1 Topology ALZOTItRINcccoiiiiiiiiiririeeriecii ettt srene e 77
5.2.2 Wireless Channel MOdel.........ccoiiirririnceeiece ettt eses e seesesvenses 78
5.2.3 Performance Metrics for Larger SCenariosc..cocevevrecreerrermnereeneniininenienesiecrnenne 79
APPENDIX 80
APPENDIX Al ..ooiioiiiiiieieiieeiteeereieeeetesetaeseeesseseseaetsssssesssesssaesssessesssstessssantasssssassesorsossessarsesssseennns 80
A.l Commands Related 10 VATM:........couoviiieeeiiiieeeceenieeennienrreseessesseessasssessisssssssesssssssenssens 80
A2 EXAIMPLES ..ottt steete et astas e eeve s teessesersesess s esse s tesenseeesseassesassseanasesbeensnaens 81
A.2.1 To create a VATM (with SAR+DLC) on an ATM card........cccceecverererneercrnneneennen. 81
A.2.2 To create a VATM (with SAR only) on an ATM cardcccocevieieeinnnicnnccnecnnes 82
A.2.3 To create a VATM (with SAR+QoS+DLC) on an ATM card........ccccceevveeverercrennnen. 82
A.2.4 To create a VATM (DLC only) on an ATM card........cceceevvvervrnverncensenrcnnecnnierneennns 82
A2.5Todestroy @ VATMccoviiioniiieeieieiieceseseetesneessesssessesseessesssasnsesssessossesonseesessnes 82
A.2.6 To change the # of ATM cells that in a DLC framecccoceeciveiniinniininnniincenn. 82
A.2.7 To create the VATM and run it on the RDRN 1adiosccceeviecinennccncnenniencenn 82
A.2.8 To set the credits on the VATM for the RDRN radiosc.cecceeeeviiiiiiiniicnceninenne 83
APPENDIX B ..iiiiiiiiiiiiiecrvteesrtertrtsecttere e s e steeesbsassres s vaeserensasssneesssnaessssaassssesen stoes saneesaessnsaans 84
B.1 Routing AlGoTitRm..........cccocccceiienvonrennnnnensnessessesesecssssssessensssssessssssesssssssssassssssssessassnses 84
B.2 Verify Routing Update & Update Table AIQOTItRINc..uvcveveevviviincinriciisiincenieenen. 86
B.3 Send Routing Update & Send Routing Summary AIGOvithim............cocvnvevrinivvcncnnncnnne 86
APPENDIX € .oiiiriieieiieeiiiiesieeeeeeeaeteesaeessnasssussasssnesssssssssssesssnassasssessassesssnsesssasssssrasssssssasssssanns 87
C.1 An Example of Port-Map File.................occueccuieeerieeiiiniescieeie st s e st e s eeeeseseeesseeesane 87
C.2 An Example of the SCenaArio Fileueuinveeeviirciieiiincreieeesieeesies s sssissitssseeseeessnes 87
APPENDIX D L.ttt sieecssnteesiesscteesesaaas s te e saeesssmteessanae s seesssusaanssnsnes sansssonssacesssases 89
D.1 Scenario File for Scenario 1 as shown in Section 4.1c..covevvevevvreircninninnnennicinnnnns 89

' D.2 Scenario File for Scenario 2 as Shown in SeCtion 4.2ccoeeeeeeeeeviverserreersresrsieeeneensninns 91

REFERENCES: 94

INDEX 95

Index of Figures:

FIGURE 1: HIGH-LEVEL VIEW OF RDRNUT ..o e nae 16
FIGURE 2: LINK LEVEL VIEW OF THE RDRN (..o 18
FIGURE 3: WATM PROTOCOL ARCHITECTURE...........ovvmiiirtiieees et 20
FIGURE 4: WATM FRAME FORMATccccotririririnieieinieteininieresesetssnsssssssssesesestesssesesesssessnsassnsasesenes 21
FIGURE 5: ROUTING SCENARIO, EXAMPLE 1P..........oiiviimiiieee e 23
FIGURE 6: CHANGED ROUTING SCENARIO, EXAMPLEI™!oviiiiiiieieceeeese e 23
FIGURE 7 PHYSICAL CONNECTIVITY OF THE TESTBEDSc.eecvueuererimiernesererenensesesesssesasesnssesssessans 25
FIGURE 8: PHYSICAL CONNECTIVITY OF THE TESTBEDS.........cceteueueueumveresesssessesesssssssssssnsnssssesesenns 27
FIGURE: 9 FOUR-NODE SCENARIOccceurvrirertririetenssieiessaressesosssesesssssmsssesesesessesesosesssesesesansesssesesen 28
FIGURE 10: ORDERWIRE RANGE FOR THE 4 NODE SCENARIO........c.ceeveueerireeresemenrsnsesnsnsssssesesenes 29
FIGURE 11: HIGH SPEED CONNECTIVITY FOR THE 4 NODE SCENARIO......c.cocevvtririsreesuorerenernenesans 31
FIGURE 12: VATM ARCHITECTUREccceeertteieiiteeeeesnreriresscesnssssisssisaesssesssassssesansesssssnsessssessnsesans 33
FIGURE 13: SOFTWARE MODULES IN THE EMULATION ENVIRONMENTc.cvteinieueriensernnnesnnenas 36
FIGURE 14: 4 NODE SCENARIO ...c.vevtrverrereerresieessesaessessessacssasasssasssesasonsssseosssssusssesseessuessnessasnsas 38
FIGURE 15: STATE OF THE NETWORK AT T =T 4 AT3 c.vveruereeerereieieeneenessesesesesasessnsesnsessesesesssnes 39
FIGURE 16: STATE OF THE NETWORK AT T = T # AT S cc.uvveeiererivieerrreeinieresssveeessunsessssmssessrsssssssssssnns 39
FIGURE 17: VATM ARCHITECTUREcc.ccuvvterterriientieeneerenteneseanteseeseesseneensessensesresseneessesaessesseens 43
FIGURE 18: VATM WITH SAR LAYER.......cccteecteriiiniiirtienieeiesrieseresssesaessessensssasaesssesssassssaesaseeson 44
FIGURE 19: VATM (WITH SAR) HOOKED TO THE MICRO-SWITCHccoeecueevrenrrinrneeenensersranssnns 44
FIGURE 20: VATM WITH SARHDLC LAYERcc.cccitriiieeistrriererteesneesrssnestsie siosensssessiessessesnens 45
FIGURE 21: VATM WITH DLC LAYERcccceitetiiriiniininieterteeeresteessesesseeseessesessessessessessessseenss 46
FIGURE 22: INTERACTION BETWEEN ORDERWIRE MODULE AND ROUTING MODULE................... 56
FIGURE 23: THREADS IN THE ROUTING MODULEcveurirteinrerereniniinssesesseessesentsesmmesssessesenesesenes 57
FIGURE 24: SCENARIO L...couuiiiiiiiiiiniieriiiisesreeceeeeentessenet s eseesse st sraesaessssvessnesanesnsonsesuessnseneesssens 60
FIGURE 25: STATE 1 OF CONNECTIVITY SCENARIO ©.....ceeiieieieniieiseeecreeseereseeeeseneseosenenseneneene 60
FIGURE 26: STATE 2 OF CONNECTIVITY IN SCENARIO L....iiccooiriiiiniiiniiiiiienicnnieeie e 60
FIGURE 27: STATE 3 OF CONNECTIVITY IN SCENARIO L.....cccetrmririniniiriereieiinecsinnenessenessceseenenes 61
FIGURE 28: STATE 4 OF CONNECTIVITY IN SCENARIO L....coccoviiiceiiniicicniiiniiinnteinesesne s 61
FIGURE 29: STATE 5 OF CONNECTIVITY IN SCENARIO L...cccecotnniiiiiniinniiiinniiniiiiiiieneie s 61
FIGURE 30: ROUND TRIP TIME (RTT) FOR PING VS EMULATION TIMEcocccverierrienrnenreeeninennne 62

FIGURE 31: STATE OF CONNECTIVITY BETWEEN NODE A & NODE G FOR DIFFERENT HELLO
INTERVALS ..oceiivitttteieiriitteeteestteeeesesbereesssssrrssesssrssesssssresessssnsressesssnesesssssssrssessesssssassssssnsassesess 63

10

FIGURE 32: STATE OF CONNECTIVITY BETWEEN NODE E & NODE G FOR DIFFERENT HELLO
INTERVALSovveeoteeirteeeentteiiceeesetreeesteeeesaeeestesasseessssesssnnesesseesesesssassessssssssssssssesssesessanssssssessesnn 64

FIGURE 33: THROUGHPUT RESULTS FOR THE 7 NODE SCENARIO WITH DIFFERENT PROTOCOL

STACKS ON THE VATM ..ottt s et stessa s e 66
FIGURE 34: SCENARIO 2......ccooitiiiireereeeaentesrissssnsssesssntestssessesessessessessessessessessesseentssesseessssaessesseen 69
FIGURE 35: STATE 1 OF CONNECTIVITY IN SCENARIO 2....c.cecueieienteniernreeeenseneessessaneessesserseensesses 70
FIGURE 36: STATE 2 OF CONNECTIVITY IN SCENARIO 2....cccoutrteimriieeneentsieneneasineeneseeesseseessensines 70
FIGURE 37: STATE 3 OF CONNECTIVITY IN SCENARIO 2.....cuecvririrmirnrrreranseserersesessaseserensosennerssesene 70
FIGURE 38: STATE 4 OF CONNECTIVITY IN SCENARIO 2...c.coveteiiirienireneensiisnessneosuesessnesseensessasesnes 70
FIGURE 39: STATE 5 OF CONNECTIVITY IN SCENARIO 2...cvvvvvoreereeessesseseereeeseeeseesessesssssssssseceeeee 71
FIGURE 40: ROUND TRIP (FOR PING) BETWEEN NODE F & NODE G VS EMULATION TIME.......... 71

FIGURE 41: THROUGHPUT RESULTS BETWEEN NODE F AND OTHER NODES IN SCENARIO 2 WITH

SARHDLC VATM ...ttt ves e et e sbesst e a et e s s assasseessesssseneesssenaesnsessassnesnsens 73
FIGURE 42: THROUGHPUT RESULTS BETWEEN NODE G AND OTHER NODES IN SCENARIO 2 WITH

SARHDLC VATM ...viitiiiiiiniereeneorenresiessnsssessiesetsstesassssssstssessanssssssnssssssnssssossessssossssssssass 74
FIGURE 43: NETWORK TOPOLOGY WITH THE PRESENT ALGORITHM........c.crurueuerevemememememererenseresenes 77
FIGURE 44: NETWORK TOPOLOGY WITH A MORE “INTELLIGENT” ALGORITHM.......ccccccvvvererrenennnne 78
FIGURE 45: RUNNING VATM ON THE RDRN RADIOSccccviiiiiiiiniiinriiiiiicisiene e 82

11

Index of Tables:

TABLE 1: PHYSICAL VCI/ITF FOR THE VATM L..oiiiiiiiieenrntenrereneieseeseentee et assessessassasseeneens 37
TABLE 2: SEQUENCE OF EVENTS IN THE EMULATION ENVIRONMENTc.cocverteteuennenserennesseesenns 41
TABLE 3: THROUGHPUT RESULTS FOR DIFFERENT PROTOCOL STACK ON THE VATM................ 67
TABLE 4: THROUGHPUT RESULT FOR SAR+QOS+DLC STACK ON THE VATM......ccceovurrrevevennnnn 68

TABLE 5: THROUGHPUT BETWEEN NODE A & NODE G FOR IP CONNECTIVITY WITH SAR+DLC69

TABLE 6: TIME TAKEN TO ESTABLISH CONNECTIVITY BETWEEN NODEF & NODE G 72
TABLE 7: ROUTING ALGORITHMotitiieiciieeeeseeee st sesas s s snss s saessenns 85
TABLE 8 VERIFY ROUTING UPDATE & UPDATE TABLE ALGORITHM™coovviiririirrennne, 86
TABLE 9 SEND ROUTING UPDATE & SEND ROUTING SUMMARY ALGORITHM™c..ccccevennnn 86

12

The point of philosophy is to start with something so
simple as to seem not worth stating, and to end with
something so paradoxical that no one will believe it.

Bertrand Russell

Chapter 1

Motivation & Background

In this chapter the motivation behind, the aims & the objectives of this work has been
discussed. Moreover, there is a brief overview of the Rapidly Deployable Radio Network

(RDRN) and its various components.

13

1.1 Motivation & Purpose

Conducting large-scale tests of mobile-networks, like the Rapidly Deployable Radio
Networks (RDRN), is an expensive job, both financially as well as in terms of the effort
required. But it is imperative to understand and analyze the behavior of the system on a

large-scale under different conditions before deployment can be considered.

There are three possible ways of doing such large-scale tests. They are:
¢ Use a network simulator and implement the desired system in it.
e Field Tests
e Develop an emulation environment over a testbed where the existing software

modules can be used with minimal changes.

The field tests would provide the most accurate indicator of the performance, the
robustness and the scalability of the system. However, the field tests were not a feasible
option because of the large set of radios required and the logistics. Moreover, it would be
difficult to repeat the tests under the same conditions. Hence, we chose to design an
emulation environment for conducting large-scale tests for the RDRN for it would
provide a more accurate measure of the concerned metrics than simulating the system on

a network simulator.

Hence, the first objective of this work was to design and implement a true, a repeatable, a
controlled and a scalable emulation environment for the Rapidly Deployable Radio

Network (RDRN).

The second objective after designing and implementing the emulation environment was
to run different scenarios and to measure performance metrics like throughput, time taken
for the network to converge and the fraction of the emulation time during which
connectivity could be maintained. The throughput was measured for two cases: a) IP
connectivity between the nodes, and b) ATM connectivity between the nodes. The

purpose of this was to do an initial comparative evaluation of IP vs ATM for a highly

14

dynamic environment like RDRN. These metrics would also provide an insight into the

scalability and the performance of the software modules (network controller).

1.2 Rapidly Deployable Radio Network (RDRN)

1.2.1 Introduction":

The objective of the Rapidly Deployable Radio Network (RDRN) is to investigate
wireless ATM technology for high performance, adaptive, rapidly self-configuring
mobile radio networks in the framework of the Global Mobile Information Systems

(GloMo) programs initiated by DARPA.

The RDRN architecture represents a different approach to ATM-based wired/wireless
network architectures. The overall system features the combination of two wireless

network topologies:

i. A low-speed packet radio technology to enable reliable out-of-band control for the
rapid deployment of point-to-point wireless ATM links, and
ii. A high-speed beamforming radio technology over which point-to-point wireless

ATM links is established.

As a result the RDRN design envisions the deployment of highly dynamic topologies
which require end-to-end ATM networking support, seamless interoperability with legacy
IP-based networks, and multi-hop operation over wireless nodes that can be as far as 10

km in distance.

There have been several projects that have attempted architectures for wireless ATM
such as RedNet, BAHAMAP! WATMNet¥, etc. but the features that distinguish the
RDRN system from the others are:

i. Architecture composed of two overlaid radio networks.

ii. Network configuration, control and management algorithms based on location

management distributed across the packet radio network.

15

iii. Phased array antenna with digital beamforming and software radio
iv. Mobility-aware software-based ATM switch on edge nodes.

v. Adaptive wireless communication protocols.

1.2.2 Overview:

The main objective of the RDRN architecture is to use an adaptive point-to-point
topology to gain the advantages of the wireless networks. Figure 1 shows a high-level
view of the RDRN system, which is made up of two types of nodes:

i. Mobile End Points (MEPs) to provide wireless ATM access to end-users, and

ii. Mobile Access Points (MAPs) serving as radio access point to enable switching and

connectivity among MEPs users and the ATM-LAN.

Legend
MAP = Mobile Access Point
ATHM WAN MN = Mobile Node
= Radio Antennas

0C12 (fver) High-capacity ink

] Orderun're

Mobile Access Point |

ppiplrupivebiiviol S N

bl Steerable Antenna
Ead (sﬂglelf‘e[ess :%nna. (Wireless ATH) —=<— PCI
i Wireless Modem MKN
> TR ™ (Orderure) 5-232
- GFS Receiver GPS Receiver

Figure 1: High-Level View of RDRN™

The architecture is composed of two overlaid networks:
i. A low bandwidth, low power, omni-directional network, called the orderwire
network, intended for local dissemination, topology configuration, and link setup

management among RDRN nodes.

16

ii. A high bandwidth, multi-directional network, called the WATM(Wireless ATM)
network, that includes
= 1 Mbps point-to-point connectivity between the MEP and a MAP.
* 2 Mbps point-to-point connectivity among MAPs.

The radio networks have been tested over a distance as far as 7 kilometers. The orderwire
network provides a coarse-grain control mechanism for managing links to be setup over
the WATM network while the WATM network provides a fine-grain control mechanism
for controlling the resources within the established links in addition to transporting the
user data. As described above, the RDRN system consists of two wireless network
topologies. The reasons for this are:
i. Because of its low-speed and low frequency, the orderwire offers a high level of
reliability which is key to successful establishment and continuos adaptation of the
point-to-point links over the not-so-reliable WATM network.

ii. This also leads to a simplified design of the overall system.

1.2.3 RDRN System Implementation:

1.2.3.1 RDRN Hardware:

Each node in the RDRN system (i.e. MAP and MEP) can be best described as a
transportable unit. This unit is equipped with a laptop computer, a Global Positioning
System (GPS) receiver, a 9,600 bps packet radio transceiver, and a custom-designed
phased-array steerable antenna system The antenna system features an omni-directional
receiver, a single-directional (multiple-directional) beamforming transmitter for the MEP
(MAP), and a full-duplex connection to the wireless ATM adapter installed on the laptop.
When initially deployed, each RDRN node retrieves its location information from the
GPS receiver. A MAP is capable of forming multiple digitally formed beams in the
directions of other MAPs or towards other MEPs in the vicinity. Multiple digital beams
formed by a single transmitter are all of the same frequency to allow for spatial frequency

reuse. The data rate available on the antenna is 2 Mbps between the MAPs and 1 Mbps

17

between the MAPs & MEPs. Figure 2 shows an overview of the link-level mechanism

utilized in the RDRN system.

downlink

uplink
WATM link WATM link Legend

Omni Tx/Rx

Orderwire

Omni Rx
WATM Link

Directional Tx
WATM Link

Figure 2: Link Level View of the RDRN !

1.2.3.2 RDRN Software:

Linux is the operating environment of the RDRN system running on both the MAPs and
the MEPs. The RDRN software can be divided into three major components:

® Orderwire modules

= WATM Module

* Routing module

1.2.3.2.1 The Orderwire Network:

The wireless topology is setup by initially having the MAPs broadcast their position over
the orderwire network and listen for location broadcasts from the other RDRN nodes.
Similarly, MEPs broadcast their position over the orderwire system. A location-based
distributed network configuration algorithm is executed to establish link-level
connectivity among the MAPs and sets of MEPs or among the adjacent MAPs. The
algorithm controls the assignment of node-to-node link connection, the assignment of

beam to users and the handoff of users from one MAP to another. As RDRN nodes move,

18

position updates from the GPS receivers are received and the design goal is to use this to

steer the beams in the correct direction.

The topology algorithm works differently on the MAPs and the MEPs. On the MAPs, the
algorithm calculates the distance between itself and all the other nodes it has heard from.
Since the range of the orderwire is different from that of the high-speed link, the topology
algorithm checks whether the calculated distances are within the range for high-speed
connectivity or not. If the calculated distances are within the range for high-speed
connectivity, it tries to establish point-point links with the nearest four, each being on a
different beam. On the MEPs, the algorithm calculates the distance between itself and all
the MAPs it has heard from. If the above-calculated distances are within the range for

high-speed connectivity, it tries to establish the point-to-point link with the nearest MAP.

Once the RDRN network topology is initialized at the WATM link-level using the
orderwire, the RDRN nodes start their configuration at the ATM level over the WATM
network. Local WATM link configuration strictly follows the orders the orderwire to
setup, adapt, and tear-down WATM point-to-point links. Point-to-point WATM links are
established at the physical level by close cooperation between the orderwire and the

beamforming antenna system and that communicates through the WATM adapter.

1.2.3.2.2 The WATM network:

The wireless access in the RDRN network is not restricted to the last hop. Figure 3
describes the protocol architecture for the WATM system. The WATM modules are a
mix of user-level programs and kernel drivers embedded into the Linux-ATM software.
Linux-ATM is used to provide native-mode ATM as well as TCP/IP over ATM support
to run applications and user-level signaling programs. The WATM protocol stack on the
MEP looks like any other ATM device driver to Linux-ATM. Similarly, on the MAP,
multiple WATM protocol stacks (and a single ATM protocol stack) looks like any other
ATM device driver to Linux-ATM. However on the MAPs, ATM virtual circuit (VC)
packets are routed through the Micro-Switch if configured to use AALO (null)

19

encapsulation; else, they are treated as AALS packets and processed accordingly by the

Linux-ATM architecture.

Mobile End Point Mobile Access Point
APPLN TCcP
TCP P
P
M-SWITCH(ATM cells)
AL /\L
— AAL AAL
ATM AAL
ATM ATM
-
W-DLC
ATM
wW-DLC W-DLC
W-MAC
W-MAC
I ATM
W-ATM PHY
PHY W-ATM
[PHY
MEP1 | | e
MEP-N to wired ATM network

adjacent MEPs (and/or MAPs)
with established p-to-p links
(only adjacent MEPs are shown)

Figure 3: WATM Protocol Architecture

Air packets transmitted over the WATM network are encapsulated using the WATM
frame format shown in Figure 4. The WATM stack is composed of several layers: the
AAL (ATM adaptation layer), the ATM layer (segmentation and re-assembly), the W-
DLC layer (data link control enhanced for wireless), a W-MAC layer (medium access
control for wireless) and a W-PHY layer (physical for wireless). The AAL layer provides
an interface between the WATM stack and the Linux-ATM architecture. The ATM layer
performs ATM segmentation and re-assembly functions for the AALS and AALO (null)
encapsulation types. The W-DLC layer performs link control operations to transmit a set
of ATM cells over a point-to-point WATM link. The number of ATM cells included on a
set is negotiated between peer W-DLC layers and adjusted depending upon the conditions
of the particular WATM link. The W-MAC layer in the RDRN system is somewhat
simplified since the WATM network already assumes point-to-point WATM link

connectivity. The W-MAC header contains a link-level address, frame type (time-

20

sensitive data, loss-sensitive data, or control), encoding scheme (not implemented yet)
and the number of ATM cells (for data type frame) or control type (for control type
frames). The W-PHY layer appends a header to the WATM frame for channel

equalization and timing at the physical level on the receiver.

WATM WATM
Header WATM Frame Payload Trailer
(HDLC) (HDLC)
4 4
DATA
g W-DLC W-DLC
W-MAC | eader | (1-9ATMcellsmax+ | Trailer
pad)
4 4 4

Figure 4: WATM Frame Format

1.2.3.2.3 Wireless Multi-path Routing Protocol (WMRP)"*! module:

The protocol as proposed by Fadi Wahhab is a multiple path extended distance vector
algorithm that utilizes information regarding the length and second-to-last (predecessor)
of the shortest path to each destination to prevent loops. To reduce routing overhead,
updates are sent only after a topology change, and to ensure connectivity, Hello Packets
are exchanged between neighboring nodes every Hello Interval. If no such packets are
received at a certain node from its neighbor for three consecutive Hello Intervals, the
node assumes that connectivity with that neighbor has been lost. The protocol provides
multiple paths to each destination, makes use of the channel nature of RDRN network to
send different information to different neighbors (split horizon), which increases the route

availability, and sends changes in routes to the neighbors affected by that change.

21

The routing table of node x contains an entry for each destination j, each of those entries

contain the following:

e The destination identifier (j).

e A list of neighbors, if any, that would be affected by the change and need to be
informed about it.

¢ One or more path(s) information, each path is identified by a different neighbor and
contains the following information:

e The identifier of the next hop (k).

e Metric representing the distance to j.

e The identifier of the predecessor (next to last).

A detailed description of the protocol is given in Chapter 3.

The following example gives a brief illustration of how the availability of multiple paths
to each destination helps in maintaining the connectivity in a highly dynamic

environment like the RDRN.

Example 1

For the sake of simplicity the example shows how the protocol works for only one
destination (Node J). The table by a node in Figure 5 represents the routing table at that
node for the destination, Node J. Each row in the table gives the destination - next hop —

hop count — second-to-last (in the same order).

Consider the network shown in Figure 5. Here we would not analyze as to how the
routing table at each node was created; and we will assume that the network has

stabilized.

22

Figure 5: Routing Scenario, Example 1*!

Say now that node B is sending data to node J (which takes the path B-A-J) and node B
moves as shown in the Figure 6. As soon as node B detects the link failure between A
and B, it starts using another route to destination J which it already has in its routing table
i.e. routing the data through node C. The link failure will be detected after three Hello
intervals, unless a lower layer protocol can detect such a failure and provide feedback to
the routing agent earlier. Node B also updates its routing table, and informs node C about
it. Node C will also update its routing table and inform node D about it with the next
Hello packet. The idea from this example is to show that the data would still be routed
correctly before the network converges. Figure 6 shows the routing entries at each node

for destination J after the network converges.

Note that the amount of data packets dropped is minimal, because the routers keep
multiple paths to a destination so the nodes can make use an alternative routes even

before the network converges.

J| Al
cla| A
B
J B| o
c D A

Figure 6: Changed Routing Scenario, Example1™

23

1.3 Requirements

Since, one primary goal of this work was to do a comparative evaluation of IP vs ATM

and to look into the scalability and the performance of the network controller; the first

step in the design of the emulation environment was to isolate the actual radios (radio

controller) and to provide an alternate mode of connectivity for both the orderwire' and

the high-speed link. This implied that there should be a mechanism for emulating the

beams over the ATM testbed (shown in Figure 7) and the ability to multiplex/de-

multiplex traffic for different destinations over the same beam.

Another requirement was to implement the routing protocol (WMRP) as it had not been

done yet, and to integrate it with the other software modules of the RDRN.

Hence, the objectives of this work were:

Design and implement a configurable protocol stack that emulates the high-
speed link. By configurable, it means that the protocol stack might be from a
set of valid combinations like

= SAR+DLC (Segmentation & Re-assembly + Data Link Control)

= DLC (Data Link Control)

* SAR + QoS (Quality of Service) + DLC
This would help to identify what possible combinations give better
performance. The fact that the protocol stack would emulate the beams on the
ATM testbed did not preclude that it should not work on the actual radios.
Implement the WMRP and integrate it with other software modules.
Make the required minimal changes in the existing software modules to adapt
it to the emulation environment.
Run different scenarios in the emulation environment and measure different

performance metrics.

! Implemented by Leon Searl

24

Emulation Manager

] i)
Fiber
ATM SWITCH ATM SWITCH
Fipér
Fiber Flber Fiber
Tostbed 1
(MAP/MEP)
Tostbed 2
(MAP/MEP)
Testbed n
(MAP/MEP)
Testbed n+1
(MAP/MEP)

Figure 7 Physical Connectivity of the Testbeds

25

A reasonable man adapts himself to suit his
environment. An unreasonable man persists in
attempting to adapt his environment to suit himself.
Therefore, all progress depends on the unreasonable
man.

George Bernard Shaw

Chapter 2

Requirements and Design of the Emulation Environment

In this chapter, the requirements of the emulation environment are identified by taking a
given scenario into consideration and analyzing how it would behave in the “field”. Once
the requirements are identified, possible solutions for those requirements are discussed

and then the same scenario is considered in the proposed emulation environment.

26

2.1 Configuration of the Testbeds

Before we look into the requirements and the solutions for those requirements, we would
look as to how the testbeds are physically connected. The physical connectivity of the

ATM-testbeds is as shown in Figure 8.

The characteristics of the layout shown in Figure 8 are:

e There are n+1 (equals 24) testbeds, which are Linux boxes with Red-Hat 4.2
running on them. The Linux kernel is 2.2.1 with ATM tools ver 0.53. Each of
these represents a MAP or a MEP.

o There is a master machine called the Emulation Manager.

Emulation Manager

U U
Fiber
ATM SIWITCH ATM SWITCH
Fip€r
Fiber Fiber Fiber
Testbed 1
(MAP/MEP)
Testbed 2
(MAP/MEP)
Testbed n
(MAP/MEP)

Testbed n+1
(MAP/MEP)

Figure 8: Physical Connectivity of the Testbeds

27

e Each testbed has 100Mbps Ethernet connectivity so that it is possible to
establish remote-login.

e Each of the testbed has an ENI-155p ATM-card, which is connected through a
fiber to the FORE-ATM (asx200bx) switch with S_ForeThought_5.3.1 FCS-
Patch. The FORE-ATM switches have 12 ports. This implies that at any given
time only 12 machines can be connected to the switch

e [f the emulation scenario contains more than 12 nodes, then an another FORE-

ATM switch could be used.

2.2 Identification of Requirements and Solutions to those
Requirements

Let us consider the following scenario as shown in Figure 9 in which we have 2 MAPs &
2 MEPs and Node D is moving westwards. For the sake of simplicity, we assume that all

the nodes come up at the same time.

Figure: 9 Four-Node Scenario

28

We will now go through the steps that are involved before any data transfer can take
place between any two nodes that are not neighbors. This would help us to identify the

various components that need to be emulated.

The different stages involved in the field are as follows:

2.2.1 Stage 1: Exchange of Information over the Orderwire

As soon as the nodes come up they obtain their position from the GPS receiver and start
transmitting their position over the orderwire. All those nodes that are within the
orderwire range would hear the location. As shown in the Figure 10, Node A receives the
orderwire information from Node B, Node B receives the orderwire information from
Node A & Node C, Node C receives the orderwire information from Node B & Node D

and Node D receives the orderwire information from Node C.

Figure 10: Orderwire Range for the 4 Node Scenario

Requirement:
Req.1: In the emulation environment there would not be any GPS receiver from which
the nodes would be able to get their positioin at different instances of time. Hence, the

emulation environment should provide a mechanism by which the nodes would know of

29

their GPS values (locations) at different instances of time. This in turn would help to
emulate the mobility of the nodes.

Solution!™:

The orderwire module was be modified so that now instead of interfacing with an actual
GPS receiver, it opens a socket to the Emulation Manager on a predefined port and listens
on that port for its location information from the Emulation Manager. The socket type is
of User Datagram Protocol (UDP) type. The value of the predefined port is 20361. The
Emulation Manager sends NMEA 0183 format GPS message to each of the nodes and the
entire GPS message is sent in a single datagram. The GPS data is sent to each of the node
every 1.8 seconds. Detailed information about the GPS data format can be found at

http://www.ittc.ukans.edu/~searl.

Req.2:1t should also provide a way by which the orderwire packets are broadcasted to all
the other nodes which are within the orderwire-range of the given node.

Solution:

The orderwire module was modified so that now instead of interfacing to the packet
radios to transmit the orderwire packet, it opens a socket to the Emulation Manager over
the Ethernet on a pre-defined port and sends & receives the orderwire packets on that
port. The socket type is of User Datagram Protocol (UDP) type. The value of the
predefined port is 20362. The Emulation Manager reads Orderwire datagrams on its well-
known port and then re-transmits the same datagram to zero or more of the nodes
depending on the topography and node separation. The nodes receive the Orderwire UDP
datagrams on the same well-known port number as that of the Emulation Manager. The
Emulation Manager does not look into the contents of the packet so it would not know
the current position advertised by the nodes and hence it is not able to calculate the
distances between them. This implies that the Emulation Manager would not be able to
filter the orderwire packets and each node in the network would get the orderwire packets
from all the other nodes. This is obviously different from what happens in the field, but it
is of no concern since the orderwire would never attempt to configure a high-speed link

to the nodes that are not within its range.

30

2.2.2 Stage 2: Establishing the Network Topolgy & High-Speed
Connectivity

After getting the position of the other nodes which are within its orderwire range, each
node would execute the topology algorithm and depending on whether it is a MAP or a
MEP, it would try to establish the high-speed link with the neighbors. It is quite possible
that a node might not hear from all the nodes within its orderwire-range because of the

topography (terrain blocking).

The topology algorithm works differently on the MAPs & the MEPs. On the MAPs, the
algorithm calculates the distance between itself and all the other nodes it has heard from.
Since the range of the orderwire is different from that of the high-speed link (for
simplicity, we will assume that they are the same), the topology algorithm checks
whether the calculated distances are within the range for high-speed connectivity or not.
If it so, it tries to establish point-point links with the nearest four, each being on a
different beam. On the MEPs, the algorithm calculates the distance between itself and all
the MAPs it has heard from. If the above-calculated distance is within the range for high-
speed connectivity, it tries to establish the point-to-point link with the nearest MAP. The
scenario after the execution of the topology algorithm and the beam used by the nodes

has been shown in Figure 11.

Orderwire Range of Node A

........... Orderwire Range of Node B
............ Onderwire Range of Node C
.................... Orderwire Range of Node D

Figure 11: High Speed Connectivity for the 4 Node Scenario’

? The text next to the links indicate the beam # being used by the nodes.

31

Though the point-to-point connections has been established between the neighbors, data
transfer can take place only between neighbors but not between any two nodes which are

not neighbors of each other. This would be possible after Stage 3.

Requirement:

Req.3: Since the emulation environment would be implemented on ATM-testbeds the
environment should provide a way to emulate the beams.

Req.4: Moreover, since the traffic for more than one destination might be going on the
same beam there should be a mechanism for multiplexing the traffic at the sources and
de-multiplexing the traffic at the destinations and the intermediate nodes.

Solution:

As outlined in Chapter 1, a MAP can establish a maximum of 4 point-to-point high-speed
links and a MEP can establish only one. One solution to this problem would be to have 4
ATM cards, where each card would represent a single beam. This solution is neither
elegant nor feasible since it would imply that each machine would take up 4 ports on the
FORE-ATM switch. Hence, the solution to the above problem is to design and implement
something called “Virtual ATM (VATM)” shown in Figure 12. This creates 4 ATM
devices on top of a single ATM card but the RDRN software would see as if the given
machine has 4 ATM Network Interface Cards. Each of these VATMs would have a
different interface id (ITF). These VATMs would be hooked to the underlying ATM card
on a given VCI, called the physical VCI. However, this physical VCI would be
transparent to the higher protocol layers (like Classical IP). They would be sending the
traffic to different destinations on what is called the logical VCL. This way it would also
be possible to multiplex traffic for different destinations on the same beam and a

corresponding de-multiplex at the destinations or the intermediate nodes.

32

CLIP (Classical IP)/ATM Swicth cLip

Logical VCls
on which the
higher IayerS\/'
send the
packets .
Physical VCI on
= b3 < =
= SAR 3 SAR = > which the VATM
2 Qos S— ¥ san T| b is hooked to the
DLC bLC ENI card (e.g.
/ VCl = 204)
ITF1 ITF2 ITF3 ITF4
Beam 1 Beam 2 Beam 3 Beam 4

ENI Card (ITF 0)

Figure 12: VATM Architecture

Req.5: The Emulation Manager should also be able to establish/tear-down high-speed
connectivity between the neighbors.

Solution:

As it was shown in Figure 8 each of the nodes (testbed) are connected to the FORE-ATM
switch. Hence, to establish ATM connectivity between two testbeds the PVCs need to set
up on both the testbeds as well as the FORE-ATM switch. The PVCs on the testbeds
would be set up by the Orderwire using the Linux-ATM tools. To set up the PVCs on the
FORE-ATM switch, the node (Orderwire) would open a UDP Internet socket connection
to the Emulation Manager on a well-known port (20363) over the Ethernet and send a
request to create the PVC on the switch. The Emulation Manager'” on receipt of such a
request would send an SNMP (Simple Network Management Protocol) request to the
FORE-ATM switch to create the PVC. For the connection between two nodes to be
complete, both the nodes need to make such a request. Similarly, when the high-speed
connection between to nodes need to be torn-down because they went out of range or
because of the topography, the nodes need to send a request to the Emulation Manager to

delete the PVCs on the FORE-ATM switch.

33

2.2.3 Stage 3: Creation/Exchange of Routing Information

Once the point-to-point connectivity is established between the neighbors, the nodes add
their neighbors in their routing table and inform the other neighbors about the nodes
which they have added in their routing table. This way the information about all the
nodes propagates through the network, so every node comes to know of all the other
nodes and the routes to those nodes. A detailed description of how the routing table is

created and what information is exchanged between neighbors is given in Chapter 3.

Requirement:

Req.6:The routing protocol needs to be implemented as it has not been done so yet.
Solution:

To reduce the complexity of implementation, the routing protocol would run in the user-
space but it would use Netlink sockets to change the kernel routing table as and when
required. The routing protocol would also run on a pre-defined port (55555). To
exchange the Hello Packets and the routing table, the nodes would open a TCP socket
connection on the above port over the high-speed link. In this particular case, TCP is used
instead of UDP since the WMRP expects guaranteed delivery of all the packets it sends
and if it is not able to do so it would take that as indication of the link going down. This

might lead to the high-speed connection getting torn-down.

2.3 Components of the Emulation Environment

Now we will consider the same network as we did in Section 2.1 in the emulation
environment. The emulation environment would now consist of the Emulation Manager,
4 testbeds that would be connected to the FORE-ATM switch through the fiber and
would also have Ethernet connectivity. The following section explains the basic
functionality expected of the various components (as shown in Figure 13) before we

analyze the network under the emulation environment.

34

. 2.3.1. Emulation Manager®

The various components of the Emulation Manager would be as follows:

¢ Runtime Manager:
The functions performed by the Runtime Manager are:
i. Send the GPS data to each node for node motion and location

il. Broadcast the Orderwire Packets to all the nodes except from
which it received the packet.

iii. Creation/Deletion of PVCs on the FORE-ATM switch. The
PVCs on the switch would be created when a request comes
from the node. The PVCs on the switch would be deleted when
such requests come from the nodes or when the runtime manager
itself realizes that the nodes are no longer with the high-speed

connectivity range.

. e Scenario File

The scenario file contains information regarding the nodes that are there in
the network and also their positions at different instances of the emulation

time. The format of the scenario file can be found in Appendix C.2

e Port-Map File
The port-map file contains information as to which port the testbeds are
connected to on the FORE-ATM switch. This information is required to
create/delete the PVCs on the FORE-ATM switch. The format of the port-
map file can be found in Appendix C.1

3 All the functionalities expected from the Emulation Manager was implemented by Leon Searl. Detail
. information about the design is available at http://www.ittc.ukans.edu/~searl.

35

2.3.2 Modules on the Node

The different modules running on the nodes would be as follows:
¢ Orderwire Module
¢ Routing Module
e VATM driver

Emulation Manager

Scenario Flle

oy

/\7\
RunTime Manager -~ ~
The RunTime Manager in the
~— present scenatio will act as a

multicast server

i.e it will forward all the orderwire

packets received from a given
node to all the hodes which are

within the "range” of the given
node and it would also tell each
node its current GPS position at
0 different instances of time from the
scenario file. It is also responsible
for creating/deleting the PVCs on

the swicth.

ATM SWITCH \

1 1
Fiber \’e,
/ Fiber

Fiber \
VATM Driver VATM Driver
AN — “

VATM Driver VATM Driver
- ~—
Module Module Module
Orderwire \—/ Orderwire Orderwlr.
Module Module Modute

w3
o3

Orderwire
Module

Rouung
Module

Testbed 1 Testbed 2 Testbed 3 Testbed 4
Node A Node B Node C Node D

Figure 13: Software Modules in the Emulation Environment

2.3.2.1 VATM Driver

Before the emulation is started, the VATM module would be used to create 4 ATM
devices on the MAP and 1 on the MEP. Each one them would be configured with the
desired protocol stack and the CBR for the physical VCI. Each one these would represent

a beam and have a different ITF as shown in Table 1.

36

VATM # ITF # Physical VCI
vatm1 1 201
vatm?2 2 202
vatm3 3 203
vatm4 4 204

Table 1: Physical VCVITF for the VATM

The VATM has been described in detail in Chapter 3.
2.3.2.3 Orderwire Module

The orderwire module includes the emulated GPS receiver that would receive
information about its location from the Emulation Manager on the Ethernet. The
orderwire would use these GPS data in its orderwire packet and send it over to the

Emulation over the Ethernet.

When the orderwire module receives orderwire packets from other nodes, it calls the
topology algorithm and if a high-speed point-to-point connectivity needs to be
established it creates the logical PVC to the desired destination. The logical PVC would
be created on the beam (vatm) allotted by the topology algorithm. The orderwire module
also sends a request to the Emulation Manager to create the PVC on the switch between
the ports on which the two machines are connected. This PVC on the switch is used to
connect the physical VCls. The Orderwire Module also informs the routing module about

the node (and the beam #) to which it has established the high-speed link.

The orderwire module would delete the logical VClIs if it does not hear from the nodes to
which it had established high-speed connectivity within a specified timeout. It would also
send a request to the Emulation Manager to delete the physical PVC on the switch

between the two nodes.

2.3.2.4 Routing Module

Once the high-speed link has been established between the two nodes, the routing
protocol would start exchanging the Hello Packets over the high-speed link. The Hello

Packets would be sent on a TCP socket connection as the routing protocol expects

37

guaranteed delivery. Once the 3 Hello Packets have been exchanged within a specified
interval, both the neighbors would exchange their routing table. This way information
about all the nodes and their routes would propagate across the network. After the routing
table has been exchanged, the two nodes would send Hello Packets every Hello Interval,
which is of the order of seconds. If routing module does not hear from its neighbor within
a specified time, it would delete the high-speed connection to that node i.e. it would
delete the PVC to the node but it would not send the request to the Emulation Manager to
delete the PVC on the switch. This would be taken care by the Orderwire. The reason for
the above is that the routing module would be able to detect the link failure much faster
than the Orderwire. The routing protocol and its implementation is described in detail in

Chapter 3.

2.3.2.5 An Example Network

Now we will consider the scenario as outlined in Section 2.1 at different emulation time
under the above designed emulation environment. Let’s say that the all the nodes in the

network come up at t=0 i.e. the state of the network is as shown in Figure 14.

®
State of the Network at t=0

®

Figure 14: 4 Node Scenario

38

Node D is moving westwards and we will assume that at t=t+Ats it would go out of range
of Node C and come within the range of Node B. The state of the network at t=t+At; & at

t=t+Ats is shown in Figure 15 & Figure 16.

State of the Network att=t + 1, ‘ MAP

® -

‘,\“a<

B Bm2 <=>Bm2

Figure 15: State of the Network at t = t + At;

State of the Network att =t + 15 . MAP

® -

Node B & Node D
establish a link

The link between Node C

g / & Node D is tore down
o

Bm2 <=>Bm2 C

Figure 16: State of the Network at t =t + At;

39

The sequence of events/commands that would happen at the nodes has been outlined in

Table 2.
Fmulation Node A Node B Node C Node D
ime
t=0 Nodes start receiving their GPS location from the Emulation Manager
t=t+At; | Nodes start transmitting the orderwire packets to Emulation Manager that forwards all orderwire packets to all the
nodes, except to the one it received the packet from.
t=t+ At, | The topology algorithm is invoked on all the nodes. The algorithm would decide as to which node connects to
which and on what beam. Here we assume that all the nodes have received at least one orderwire packet from all the
other nodes.
Node A decides to connect | Node B decides to connect | Node C decides to connect | Node D decides to connect
to Node B on its Beam 1 to Node A on its Beam 1 to Node B on its Beam 2 to Node C on its Beam 1
(vatml) (vatml) & to connect to (vatm2) & to connect to (vatml)
Node C on its Beam 2 Node D on its Beam 1
(vatm?2) (vatm1)
t=t+At; e Node A creates the ¢ Node B creates the e Node C creates the e Node D creates the
PVC to Node B on PVC to Node A on PVC to Node D on PVC to Node C on
vatml vatml & to Node C vatm]l & to Node B vatml
e Requests the EM to on vatm?2 on vatm2 e Requests the EM to
establish a PVC e Requests the EM to ¢ Requests the EM to establish a PVC
between Node A & establish a PVC establish a PVC between Node D &
Node B using the between Node B & between Node C & Node C using the
physical VCI Node A using the Node D using the physical VCI
associated with vatm1 physical VCI physical VCI associated with vatm1
¢ Informs the routing associated with vatm1 associated with vatml | e Informs the routing
module about the new and between Node B and between Node C module about the new
neighbor Node B & Node C using the & Node B using the neighbor Node D
physical VCI physical VCI
associated with vatm2 associated with vatm?2
¢ Informs the routing e Informs the routing
module about the new module about the new
neighbors Node A & neighbors Node B &
Node C Node D
t=t+ Aty | All the neighbors are able to exchange the 3 Hello Packets within the specified time and exchange their routing
table. This way all the nodes in the network know about the existence of the other nodes and the different possible
routes to them.
t=t+Ats | Not Applicable Node B realizes through The EM deletes the PVC The EM deletes the PVC
the orderwire that Node D | on the switch between on the switch between
is now within its range and | Node C & Node D as it Node C & Node D as it

hence establishes high-
speed connectivity to
Node D. The orderwire
then informs the routing
module about the new
neighbor & the beam #
associated with it.

realizes that they are out
of the high-speed range.
The routing protocol
detects this link failure and
deletes the PVC to Node
D on its end. If it would
have an another route to
Node D, it would install
that.

realizes that they are out
of the high-speed range.
The routing protocol
detects this link failure and
deletes the PVC to Node C
on its end. If it would have
an another route to Node
C, it would install that.

40

t=t+ Atg

Detects the new route to
Node D

Node B successfully
exchanges the 3 Hello
Packets and hence
exchanges its routing table
with Node D. It also
propagates the new route
to Node D through its
neighbors.

Detects the new route to
Node D

Node D successfully
exchanges the 3 Hello
Packets and hence
exchanges its routing table
with Node B.

Table 2: Sequence of Events in the Emulation Environment

41

Never tell people how to do things. Tell them what to
do and they will surprise you with their ingenuity.

George S. Patton, Jr.

Chapter 3

Implementation

In this chapter, the Virtual ATM and the Wireless Multi-Path Routing Protocol has been

described in detail. The implementation of the above are also discussed

42

3.1 VATM (Virtual ATM):

The VATM on ATM/Ethernet is a driver that provides multiple logical ATM interfaces
on a single ATM/Ethernet card. The purpose of the above mentioned driver is to provide
an environment in which the RDRN software believes that there are multiple ATM

Network Interface Cards on the machine.

Each of these logical interfaces represent a beam and these interfaces are hooked to the
ATM card on a given “physical” VCI of AALS type. The VATM architecture is shown in
Figure 17. Moreover, the VATM provides a mechanism for multiplexing the traffic for
various destinations over the same physical VCI. The traffic for different destinations is
sent on different “logical” VCIs. This provides the ability to emulate the TDMA that is
required when a given Mobile Access Point (MAP) is communicating with a set of
Mobile End Points (MEP) over the same beam. It also enables the MEP to send traffic for

various destinations over the same beam.

CLIP (Classical IP)ATM Swicth \ cup
Logical VCls
on which the
higher layers
send the
packets Phvsi
< < < < ysical VCl on
B| SAR = | SAR = > which the VATM
S| qos s S| sar N pLC is hooked to the
DLC bLC ENI card (e.g.
/ VCI = 204)
ITF 1 ITF 2 TF3 ITF 4
Beam 1 Beam 2 Beam 3 Beam 4

ENI Card (ITF 0) ‘

Figure 17: VATM Architecture

43

3.1.1 Protocol Stacks on the VATM

The VATM:s that are created on a given ATM card can have different protocol stacks.
The different possible combinations of the protocol stacks are outlined in the following
section. However, in each of the following sections the AAL (ATM Adaptation Layer)
has not been shown, as it is common to all of them as it provides a hook to the Linux-

ATM architecture.
3.1.1.1 SAR (Segmentation & Re-assembly):

In this case the packets coming from the higher layer (CLIP) are segmented to 53 bytes (5
bytes header + 48 bytes of data) of ATM cells and sent down to the ATM driver which

packets the cells in an AALS frame. This is shown in Figure 18.

IP Packet

The IP packet passed
by the CLIP to VATM

ATM Software
> » Switch -+ z
3 g
z 411111111111 T
(9] O
A {11 |
SAR - | | o
= =
s SAR SAR E
> >
JIOE TG GHI (301 I 1111 |
i I 41111 I piil
SAR segments the IP
packet
Figure 19: VATM (with SAR) hooked to the
Figure 18: VATM with SAR layer Micro-Switch

The above VATM can be hooked to the ATM software switch. In this case the switch
would open an AALO PVC to the VATM and hence the SAR would not perform the re-
assembly of the cells. It would pass the ATM cells to the switch that does switching

depending on the entries in its switching table. This is shown in Figure 19.

44

3.1.1.2 SAR + DLC:

In this case the packets coming from the higher layer (CLIP) are first segmented to 53
bytes (5 bytes header + 48 bytes of data) of ATM cells and then sent to the DLC layer.
The DLC layer puts a given number of ATM cells in the DLC packet, which has a default
value of 7 when the VATM is created. However, the number of ATM cells in a DLC
packet can be changed on the fly. The DLC layer sends the DLC packet down to the
ATM driver that sends the DLC packets as AALS packets. This is shown in Figure 20.

The IP packet is
passed to the VATM by
the CLIP

1P Packet

SAR segments the IP
SAR packet and produces a
train of ATM cells

DLC

DLC puts the train of ATM cells in a
DLC packet. The # of ATM cells in the
DLC packet is defined when the
VATM is created; however they can

be chned on the fl
[T EREE -

TRCERHETEMNEITY ----
e A WDLC

header trailer

Figure 20: VATM with SAR+DLC Layer

In this case also, the VATM can be hooked to the ATM switch as shown in Figure 19.

3.1.1.3 SAR + QoS +DLC

In this case the packets coming from the higher layer (CLIP) are passed to the SAR
which does the segmentation of the packets into 53 bytes of ATM cells and passes the
train of cells to the QoS* layer. The QoS layer maintains different queues for traffics of
different priority and depending on its scheduling algorithm, sends the cells to the DLC
layer which then creates a DLC packet with a given number of the ATM cells. The DLC
packet is passed to the ATM driver which transmits the DLC packets as AALS packets.

* Implemented by Saravanan Radhakrishnan

45

3.1.1.4 DLC

In this case the packets coming from the higher layer (CLIP) are passed to the
AAL_DLC_GLUE_LAYER which attaches a 5 byte ATM like header and passes the
packet to the DLC layer. The 5 byte ATM-like header is added to store the logical VCI
values. As explained above, this would help in multiplexing and de-multiplexing the
traffic for different destinations over the same VATM (beam). The DLC layer attaches its
own header and trailer and sends the packet down to the ATM driver that sends the DLC
packets as AALS packets. If the size of the IP packet passed from the CLIP along with
the 5 byte ATM like header and the DLC header & DLC trailer would be greater than
that supported by the ENI driver, then the AAL_DLC_GLUE_LAYER would do
segmentation of the packet passed from above. This is required because the IP over ATM
(CLIP) specification says that the MTU should be no larger than 9180 bytes, hence there
are times when the CLIP would pass a packet of the above size to the DLC layer. Hence,
when the DLC would add its own header and trailer, it would cause an overflow on the
ENI card. A corresponding re-assembly would be done at the other end. However, in this
case the ATM software switch cannot be hooked to the VATM. This has been shown in

Figure 21.

IP Packet

The IP packet is
passed to the VATM by
the CLIP

DLC

DLC DLC
Header Trailer

"ATM like" header is
attached before the DLC
header and trailer is
added

Figure 21: VATM with DLC Layer

46

3.1.2 Data Structures for VATM

The information about each of the VATM is stored in a structure called the vdevice. The

structure is as shown below:

struct vdevice

{

int vatm_itf; /* virtual ATM interface */

enum vdev_type type; /* vdev type */

void * dev; /* the real device (e.g.,eth0 or ATM itf 0) */
struct rca_info * rca_info;

struct packet_type * pt; /* packet encapsulation type */

struct vdev_stats stats;
struct vdevice * next;

unsigned char * my_mac; /* for ethernet, its the local mac address */
unsigned char * peer_mac; /* for ethernet, its the peer */

unsigned int vci; /* for atm, its the associated vci */
struct atm_vcc * vce;

void * top_layer; /* top layer */

void * bottom_layer; /* bottom layer */

¥

The vatm_itf contains the Itf assigned to the VATM. The vdev_type field specifies
whether the VATM is built on ATM or Ethernet. The valid values are:

enum vdev_type {

VDEV_RAW = 0,
VDEV_MAC = 1,
VDEV_MAC_RCA = 2,
VDEV_ATM = 3

Y

The VDEV_RAW, VDEV_MAC and VDEV_MAC_RCA are the operating modes on the
Ethernet; where VDEV_RAW and VDEV_MAC_RCA are the operating modes specific
to the RDRN radio. VDEV_ATM is used when the VATM is created on the ATM.

The (void) *dev points to the actual device on which the VATM is built. If the
VATM is built on the ATM, it would point to struct atm_dev and if built on
Ethernet it would point to the struct device. The struct rca_info is used to
store information about the credits that is used for the RDRN radios. The vdev_stats
is a structure that stores statistical information about each of the VATM. The fields of it
are as follows:

struct vdev_stats

{

int tx_sent;

47

int tx_dropped;

int rx_received;

int rx_dropped;
}i

The my_mac and peer_mac fields are used when the virtual device is created on the
Ethernet. The vci is used to store the physical VCI on which the VATM is hooked to the
ATM card. The (void) * top_layer andthe (void) * bottom_layer point
to the top and the bottom layer on the protocol stack on the VATM.

The structure atm_vcc is used to store all the device-independent parameters for the
physical VCI on which the VATM is hooked to the ATM card. Some of the elements of

the struct atm_vcc are:

struct atm_vcec {

unsigned short flags; /* vcC flags (ATM_VF_*) */

unsigned char family; /* address family; 0 if unused */
short vpi; /* VPI and VCI (types must be equal */
int vei;

struct atm_dev *dev; /* device back pointer */

struct atm_gos gos; /* QOs */

unsigned long tx_qguota, rx_quota; /* buffer quotas */

atomic_t tx_inuse,rx_inuse; /* buffer space in use */

void (*push) (struct atm_vece *vece,struct sk_buff *skb);
void (*pop) (struct atm_vecc *vecce,struct sk _buff *skb);

struct sk_buff_head recvqg; /* receive queue */
struct atm_vcc *prev, *next;

The flags contain flags indicating the VC state. family is the address family, i.e.
either PF_ATMPVC (for a PVC) or PF_ATMSVC (for a SVC). vpi and vci contain the
connection identifier. In our case, the vpi is set to 0, as the ENI card does not support
any other value; and the vci is set to the specified value for the physical VCI. The
atm_gos structure is used to store information about the QoS parameters about the VCI.

The elements of the atm_qos structure are;

struct atm_gos {
struct atm_trafprm txtp; /* parameters in TX direction */
struct atm_trafprm rxtp; /* parameters in RX direction */
unsigned char aal;

Y
where
struct atm_trafprm {

unsigned char traffic_class; /* traffic class (ATM_UBR, ...) */
int max_pcr; /* maximum PCR in cells per sec */

48

int pcr; /* desired PCR in cells per sec */

int min_pcr; /* minimum PCR in cells per sec */
int max_cdv; /* maximum CDV in microseconds */
int max_sdu; /* maximum SDU in bytes */

Y

The aal contains the information whether the VCI is AALS or AALOQ. In our case, the
physical VCI is always of type AALS. The traffic_class and pcr in both the
transmit and receive direction is set to the traffic class (ubr or cbr) and PCR specified
when creating the VATM. tx_gouta and rx_gouta is maximum buffer space
allocated for the VC at any point of time and is set to 1024*1024 bytes. tx__inuse and
rx_inuse contain information about how much of the above quotas are in use
respectively. The push function points to the actual function that needs to be called when
any data is received on the VC. In our implementation, there are two receive functions;
one (vdev_recv_atm) is used when the VATM is created on the ATM and the other

(vdev_recv) when it is on the Ethernet.

The information about each of the layers in the protocol stack on a given virtual device is

stored in the structure called layer. The fields of this structure are as follows:

struct layer

{

struct vdevice *vdev; /* virtual device */

enum layer_type type; /* layer type (e.g., ATM_LY) */
struct layer *upper; /* layer above (NULL if none) */
struct layer *lower; /* layer below (NULL if none) */
struct layer stats stats; /* layer statistics */

void *priv; /* pointer to private layer data */

int (*init) (struct layer *layer);

void (*destroy) (struct layer *layer);

int (*open) (struct layer *layer, struct atm_vcc *vcc);

void (*close) (struct layer *layer, struct atm_vcc *vcc);

int (*ioctl) (struct layer *layer, unsigned int cmd, void *arg);

/* ‘*send’’ invoked from upper layver to send to this layer */

int (*send) (struct layer * layer, struct sk _buff *skb);

/* ‘‘recv’’ invoked from lower layer to send to this layer */

int (*recv) (struct layer * layer, struct sk_buff *skb);
Y

The vdev points to the virtual device of which it is a layer of and the layer_type

specifies what type of layer it is. The valid values are:

enum layer_type {
AAL,_LAYER = 0,
SAR_LAYER,
DLC_LAYER,

49

AAL_DLC_LAYER,
QOS_LAYER
Yi
The upper and lower are pointers to the layer above and the layer below respectively.
The struct layer_stats maintains the statistical information about each layer.

The fields of this structure is as follows:

struct layer_stats

{

unsigned long tx_packets; /* total packets transmitted */
unsigned long rx_packets; /* total packets received */
unsigned long rx_errors; /* bad packets received */
unsigned long tx_errors; /* bad packets transmitted */

Y

The init, open, destroy, close, ioctl, send and receive are pointers
to service interface routines. For example, the open points to the actual open function
(say sar_open) and is responsible for doing all that is necessary to create that layer.
Similarly, the destroy and close point to functions that care of all the actions that is
necessary when the layer is being destroyed. 1oct1 points to a function which takes care
of changing any parameters on the fly. send and receive point to the actual send and

receive functions of that layer (say, sar_send and sar_receive)

The data structure which stores information about the SAR layer is as given below:

struct sar_layer {
struct layer * layer;
struct sk_buff * vc_table[MAX_VCI];
/* VC descriptor table containing status info of each vC */
char hec_table[MAX VCI];
/* table to store pre-computed HEC fields for each open vc. */

T

where MAX_VCI (1024) is the maximum number of VCs that be opened simultaneously
on the ATM card.

The data structure which stores information about the DLC layer is as given below:

struct dlc_layer {
struct layer * layer;
struct ahdlc_cb * cb;
}i

The ahdlc_cb structure is used Adaptive HDLC and has not been implemented yet.

50

The data structure which stores information about the AAL_DIL.C_GLUE_LAYER layer

is as given below:

struct aal_dlc_glue_layer ({
struct layer * layer;
struct sk_buff * vc_table[MAX_VCI];
/* VC descriptor table containing status info of each vC */
char hec_table[MAX VCI];
Y

3.1.3 VATM Commands’

The command to create the individual VATMs is provided as a patch to the ATM tools
(ver 0.53). The syntax of the command to create the VATM is as follows:

vatm_ctl -c {type=atm} interface_id pvc=## {type=sar\diclsar+diclsar+qos+dic} [local_esi_addr] [qos
ubr/cbr:pcr=X]

® yatm_ctl -c option is to create the VATM

= {type=atm} specifies the fact that the VATM would be created over an ATM card

® interface_id indicates the interface # of the ATM card

» pve=## specifies the physical VCI with which the VATM would be hooked to the
ATM card.

" {type=sarldicisar+diclsar+qos+dic} specifies the protocol stack for the VATM

" [local_esi_addr] specifies the ESI (End System ldentifier) address of the VATM

" [qos ubr/cbr:pcr=X] specifies the qos parameter for the physical VCI

E.g. vatm_ctl —c atm 0 pvc=201 sar+dlc 0020ea000130 qos cbr:pcr=10Mbps
This would create a VATM which would have SAR+DLC in its protocol stack, and
would be hooked to the ATM card on VCI=201 with its PCR=10Mbps. This can be

verified by checking the /proc/atm/devices; which would look as shown below:

testbedll [2] % cat /proc/atm/devices

Itf Type ESI/"MAC"addr AAL(TX,err,RX,err,drop)
0 eni 0020ea002d24 0 (00O 0 O0OO0) 5 (00000
1 vatm 0020eal00130 0 (0O 0O0CO0) 5 (000 00)

% Please check Appendix A.1 for the complete set of commands related to VATM.

51

3.2 WMRP (Wireless Multi-Path Routing Protocol)

3.2.1 Notation and Assumptions®

To describe WMRP, we model the network as an undirected graph represented as
G(V.E), where V is the set of nodes and E is the set of links (or edges) connecting the
nodes. Each node represents a router, where (u,v) is an edge of the graph G, u is said to
be adjacent to v (or a neighbor of v), and v is a neighbor of u. A route from node x to
destination node j is a sequence of adjacent nodes (x, ki, ks, ...ky, j) denoted by Ryj. A
path from x to j via node k is denoted kaj where k is a node adjacent to x. The distance is
the number of hops between x and j (sum of link weights each of weight equal to 1)
D(Ry;). The predecessor node of a path R is defined to be the last node preceding node j

in the sequence of node in R,;. denoted as P(R,;). Ny is a list (set) of neighbors of node x.

The description makes the following assumptions:
e Each node has a unique identifier.
From the implementation perspective, this is the virtual IP address assigned to the
IP over ATM interface.
® A node detects the existence of a new neighbor within a finite time (order wire agent).
e An underlying (Data Link Control) protocol ensures that packets are delivered
correctly. (Reliable transmission of update messages can be implemented by means of
retransmissions if no such layer exists). From the implementation perspective, this

implies that TCP should be used to exchange the Hello Packets and the routing table.

All links are assigned the same weight (a value of 1). All links between MAP nodes in
RDRN are identical with respect to bandwidth and delay. Reliability (error rate), on the
other hand, is highly variant during the operational period of the link; so it would require
a constant monitoring and a change in the link weight if the reliability is to be included in
the calculation of the link weights. This would increase the routing overhead.

3.2.2 Information maintained at each node®

Each node maintains the following information

52

1. A routing table,
2. A list of neighbors (N) and
3. A list of new neighbors (By).
The routing table of node x contains an entry for each destination j, each of those entries
contain the following:
e The destination identifier (j).
e A list of neighbors, if any, that would be affected by the change and need to be
informed about it (Ny;).
e One or more path(s) information, each path is identified by a different neighbor and
contains the following information:
e The identifier of the next hop (k).
e Metric representing the distance to j D(kaj).
e The identifier of the predecessor (next to last) P(kaj).

e Beam number assigned for the next hop

It should be noted that the number of paths from node x to any destination is limited by
the degree (number of adjacent nodes) of node x because each entry (path) is identified
by a different neighbor. When the routing agent is informed about a new neighbor k
(through order wire agent) and that a new link has been established, x adds k to the list of
new neighbors (By), x and k start exchanging Hello messages. Three Hello messages
have to be exchanged within three Hello Intervals (Hold-off time) before the two nodes
exchange their routing information. This procedure is adopted for the following reasons:

1. It allows the nodes to check wireless reachability (not just order wire reachability)
and makes sure that the link is reliable.

2. It checks that the other node is not just passing by quickly.

3. It gives the nodes enough time to detect any link failures with previous neighbors. A
new link coming up, would be due to a change in the topology, which means the one
of the two nodes (if not both) has moved and most probably lost connectivity with
one or more of its previous neighbors. The hold-off would give enough time for
invalid routes to timeout before exchanging information. This prevents incorrect

information from being propagated through the network.

53

Note that four Hello messages can be exchanged with a three Hello interval period, so
this works as a 3 out-of 4 system. If three Hellos are exchanged successfully within the
hold-off time (three Hello intervals), then the two nodes will exchange their routing
information (x will remove k from By and add it to Ny, and send it a summary of its

routing table). Otherwise, x removes k from its list of new neighbors (By).

3.2.3 Information exchanged among nodes™

Nodes exchange periodic Hello Packets. Routing table update messages are only sent
after a change in the routings table (reflecting a change in the topology). Updates are
attached with the next Hello Packet. Each entry (Ukj) in an update packet (UX) from a
neighbor k about destination j contains the following:

e The identifier of the destination node j.

e The distance to j D(Ukj).

o The identifier of the predecessor node P(Ukj).

3.2.4 Processing an Update'

When node x receives an update message for destination j (route Ryj) from a neighbor k,
it verifies the information in the update by checking if it has in its routing table an entry
for the predecessor with the same neighbor k (kap) and a distance D(Ukj). If the update is
verified, x updates its table and set the distance to destination j (D(kaj) = D(Ukj) +1);
otherwise D(kaj) is set to . The Update procedure checks the neighbors that will be
affected by the change in the route kaj and adds those neighbors to N,;. Appendix B.2

shows the update algorithm in more details.

When an update is made to an entry in x’s table (Ry;), the neighbors that are affected by
this change are added to the neighbors’ list (Ny) so that they can be informed about the
change with the next Hello packet. Note also that x informs each neighbor k about the
minimum path it has to a destination j that doesn’t have k as the next hop or predecessor

(split horizon); so x will send an update k only if that minimum changes.

54

. 3.2.5 Sending Updates™

The Send-Update procedure (shown in Appendix B.3) is called every Hello interval to
send a Hello packet to each neighbor, and checks which updates should be sent to which
neighbors. Send-Summary procedure, which is responsible for the exchange of Hello
Packets (shown in Appendix B.3) is called after successfully exchanging three hello

packets with a neighbor. The complete algorithm is shown in the Appendix B.1.

3.2.6 Implementation of WMRP

The routing protocol was implemented in the user-space and Netlink sockets were used to
change the kernel routing table. Since, the routing protocol requires different “events”
(like sending the initial 3 Hello Packets, checking for the change in the topology, etc.) to
be executed concurrently; it had to be implemented either as multithreaded or as a multi-
process application. It was implemented as multi-threaded program using Pthreads®. The
‘ reasons why we chose to implement it as a multi-threaded program as compared to a
multi-process program are'’:

e Creating a process can be expensive, both in time and memory

e Synchronization of data is easier with Pthreads.

Besides the routing table the routing module maintains two lists:
e new_neighbor_list:
This is the list of nodes to which the routing module tries to exchange the 3
Hello Packets within the Hello Interval
e neighbor_list:
This is the list of nodes which are the neighbors and to which the high-speed

connectivity exists.

3.2.6.1 Interaction between the Orderwire Module and the Routing Module

¢ Pthreads is a standardized model for dividing a program into subtasks whose execution can be interleaved
‘ or run in parallel. The “P” in Pthreads comes from POSIX®.

55

‘ The orderwire module writes to the shared memory about all the nodes to which it has

high-speed connectivity and on what beam # as shown in Figure 22.

Routing
Module

Orderwire
Module

Figure 22: Interaction between Orderwire Module and Routing Module

The routing module reads from the shared memory and checks whether the node is
already included in the neighbor_1ist or not. If not, it would add that node to the list

of the new_neighbor_1list and start the exchange of the initial 3 Hello Packets.

. 3.2.6.2 Threads in the Routing Module

The different threads that constitute the routing module are shown in Figure 23.

56

. Intialise the routing table

main () { This thread opens a TCP socket on the

predefined port and listens for any packets

that comes on the socket. If it gets a packet

on the above socket, it spawns a thread

which is responsible for handling the packet.

pthread_create(recv.....) It itself goes back to listen on the socket so
that it does not drop any packet.

initialise_routing_table;

pthread_create(check_topology......)

pthread_create(sends.......) \ This thread is responsible for periodically

reading from the shared memory and if there
is a node which it adds to the
new_neighbor_list, it sends a signal to
the send3 thread to start the initial echange
pthread_create(check.....) of 3 Hello Packets

pthread_create(send.......)

} This thread waits for a signal from the
check_topology thread. If it gets a
signal, it opens aTCP socket to the
concerned node/nodes and sends the 3

" Hello Packets.
This thread periodically goes through the

neighbor_list to check whether it has

heard from the them within the last This thread is responsible for sending the
3*Hello_Interval and if it has not, it tears down Hello Packet every Hello Interval to all the

the high-speed link to the concerned node. it nodes in the neighbor_list to check

also goes through the new_neighbor_list to whether the high-speed link is alive or not. It
check if the 3 Hello Packets were successfully is also responsible for sending the summary if
exchanged or not. If it were, it adds them to the required to the concened neighbors.

neighbor list.

Figure 23: Threads in the Routing Module

Since, more than one thread would attempt to read/write to the same variable,
synchronization of the threads was required. This was done using the mutex variable
functions. A mutex variable acts as a mutually exclusive lock, allowing threads to control
the access to data. The threads agree that only one thread at a time can hold the lock and

access the data it protects.

3.2.6.3 Changing the Kernel Routing Table

As outlined earlier, the implementation of the WMRP resides in the user-space. However,
the routing table in the kernel needs to be changed to reflect the current routing table that
resides in the user-space. Hence, as when the shortest path to the concerned destination

changes, the routing module uses Netlink sockets to change the kernel routing table.

57

Netlink is used to transfer information between kernel modules and user space processes.
It provides kernel/user-space bi-directional communication links. It consists of a standard
sockets based interface for user processes and an internal kernel API for kernel modules.

Netlink is a datagram-oriented service. The interface is as shown below:

netlink socket=socket (PF_NETLINK, socket_type,netlink_family) ;

Both SOCK_RAW and SOCK_DGRAM are valid values for socket_type; however
the netlink protocol does not distinguish between datagram and raw sockets.
netlink_family selects the kernel module or netlink group to communicate with.
The netlink_family used in our case was:

e NETLINK_ROUTE: Receives routing updates and is used to modify the IPv4

routing table.

58

Chapter 4

Results

It is the mark of an educated mind to rest satisfied
with the degree of precision which the nature of the
subject admits and not to seek exactness where only
an approximation is possible.

Aristotle

In this chapter, two scenarios were executed in the emulation environment and metrics

like throughput, time for the network to converge & fraction of the emulation time for

which connectivity could be maintained were measured.

59

4.1 Scenario 1

The following scenario (Figure 24) consisting of 7 nodes were tested. It consisted of 4

MAPs and 3 MEPs.

/,f’ G @ v
/ . MEP

: S—

\\\

N
..

A
Figure 24: Scenario 1

In the above scenario all the nodes except Node F & Node G were stationary. Node F
moves eastward in a straight path at a speed of 436.98 Km/hr & Node G also moves
eastwards in a straight path at a speed of 460 km/hr. The speed of the nodes was chosen
to be high so that it is possible to see appreciable change in the topology for smaller
emulation periods. Please look at the Appendix D for the scenario file. The different

states of connectivity of the network is as shown below:

————— >
G
F
D c B
State 1 ./ State 2
E A E A
Figure 25: State 1 of Connectivity Scenario 1 Figure 26: State 2 of Connectivity in Scenario 1

60

\ ’D
B
.
State 3 \. / State 4
A E

Figure 27: State 3 of Connectivity in Scenario 1 Figure 28: State 4 of Connectivity in Scenario 1

E A

State 5

E A

Figure 29: State 5 of Connectivity in Scenario 1

The emulation starts i.e. the Emulation Manager started to transmit the GPS data to each
of the nodes, when all the 7 nodes in the scenario had registered with the Emulation
Manager. This way it was ensured that all the nodes came up at the same time. Moreover,
the clocks of the testbeds (the nodes) were synchronized with that of the Emulation

Manager.

4.1.1 Ping Results

The average RTT between Node A & Node G for the ping application was measured by

forcing 2000 ping packets. This was done whenever it was observed that the route

61

‘ between Node A & Node G had changed. The graph below (Figure 28) shows the result

obtained.
Fosuerd Teip Thove Lottwsn Node & & Nade 4 e
Furislation Tire
I e
b3 -
3
L
o B8t
E
E ®
g E
£
&g %%
¥
B8
4 : e -
& Faid L & L] g1 W e 1683 k14
Ssutwdors Tome [yrconrch)
. Figure 30: Round Trip Time (RTT) for Ping vs Emulation Time

As it can be seen from the above graph that the RTT time decreased as the simulation

time increased. This is so because the path taken by the packets changed as follows:

From {A—-»B—>C—>D—F—-G} to {A—B—»>C— F->G} to {A>B—>F-G}.

4.1.2 Connectivity Results

The following graph (Figure 31) indicates the time taken to establish connectivity and
also the state of connectivity between Node A & Node G for different Hello Intervals of

the routing protocol.

62

Btate of Connnctivity betwern Node & & Hode G ve
Bammlation Thne for different Hello Intrvads

MZ' H ¥ ¥ » ¥ * vy
&=
B Helle Isterval » # seconds
: 1
B
8
3
W
3 : i : : i : : : H H i 3 3 :
] WO O 4k %N S M B 8 WE VI 1D YW MWD W 6P TR OISD
2 y ¥ ¥ i
P
fg Halo Snbuevnt » 3 sueoinds
E £
-] -
il z
k]
b}
-]
5]
a . . , , .)
[W2 3 o4k B &0 M By 9 46F 116 13D WED W0 BBR 16D 12 80
\2 § ¥ “f e e e ,ng,v“m..;,,
=
é Helio interval = 4 seconds
3 ;
§ k|
=
i
[

W B av 8§06 70 8 B W NG 125 Y0 D 4 WE 170 180
T Ty sanp——)

23

Figure 31: State of Connectivity between Node A & Node G for different Hello Intervals

It should be noted here that the time taken to establish connectivity between Node A &
Node G has been measured with respect to the time at which the emulation was started

i.e. at time t = 0, even Node F did not know about the existence of Node G.

As expected, the time taken to establish connectivity between Node A & Node G
increases with the increase in the Hello Interval. The smaller the Hello Interval, the faster
the nodes would exchange their routing table and hence the routes to different

destinations would propagate faster across the network.

It can be seen from Figure 31 that once the connectivity between Node A & Node G has
been established, it does not go down. This can be explained by looking at the state of
connectivity diagrams (Figure 25- Figure 29). First, the connectivity between Node A &

Node G is via AoB&CoDFoG as shown in Figure 25. When Node F comes

63

within the range of Node C, the link between Node F & Node C is established, and hence
the connectivity between Node A & Node G is via AcB—CFoG i.e. Node C would
route packets for Node G through Node F and not through Node D. Hence, even when
the Node F-Node D link goes down (Figure 27) the connectivity between Node A &
Node G is maintained. It can be similarly explained how the connectivity between Node

A & Node G is maintained even when the Node C-Node F link goes down.

The following graph (Figure 32) indicates the time taken to establish connectivity and

also the state of connectivity between Node E & Node G for different Hello Intervals.

Bhale of Cosnwctivly hativns Hode E 5 o O v
Siewilnkion Tame for ditfwened Helo inkerents

L

¥

& Hillo loterved » 2 seconds
g & B 53 we s

E3) . o . s S B

&

i

& , N

B WO W 4R % B0 TR B W WOV WM OV MW W W I 1M
R ? y ¥ Y
£ Hallo bedurvad « § sucands
£
E P a7 W T
U i
B
#

A .

§ st 3 3% A% 8D BN b k6 W W0 I6 WD WO WG G0 W3 U0 1
€ Hells klewad « § seconds
£
E 3 ;] 164 b 147
& bk : 1 —

"
H
o

O 4y G B Yo g0 W WS W WO VW W g W 19 *im
Sbrubelii Tore netirdil

L3
o
L

Figure 32: State of Connectivity between Node E & Node G for different Hello Intervals

It should be noted here that the time taken to establish connectivity between Node E &
Node G has been measured with respect to the time at which the simulation was started

i.e. at time t = 0, even Node F did not know about the existence of Node G.

As expected, the time taken to establish connectivity between Node E & Node G

increases with the increase in the Hello Interval. The smaller the Hello Interval, the faster

64

the nodes would exchange their routing table and hence the routes to different

destinations would propagate faster across the network.

However, if we compare the time taken to establish the connectivity between Node E &
Node G and Node A & Node G for the same Hello Interval, we can see that the time
taken for the Node E-Node G pair is less. This is so because the initial shortest path
between Node E & Node G was across only 3 hops while it was 5 hops in the case of

Node A-Node G pair.

We can see from Figure 30 that the connectivity between Node E & Node G is not
maintained at all times. This can be explained by looking at the state of the connectivity
diagrams (Figure 25-Figure 29). Initially, the connectivity between Node E & Node G is
via E&Do&FoG (Figure 25). Even, when the Node F-Node C is established, Node D
would still route the packets for Node G through Node F only as it would be the shortest
path and hence the above route would be maintained. However, when the link between
Node D & Node F goes down, the connectivity is lost and it would take the routing
protocol at Node D at least 3*Hello_Interval to detect the link failure. When it is able to
do so, it would start routing the packets for Node G through Node C. This is why we see
the loss of connectivity at t=86 (for Hello Interval = 2seconds). However, we can see that
the connectivity is up again after 7 seconds (3*Hello_Interval +1) though it should have 6
seconds for the Hello Interval = 2 seconds. The extra second can be attributed to the fact

the resolution of the tool, which checked for the connectivity, was 1 second.

4.1.3 Throughput Results

The throughput measurements were made between Node A and all the nodes in the
network for Hello Interval = 2 seconds. They were measured by using the FTP
application and the size of the file transferred was approximately 20 MB. The FIP
application was started as soon as the connectivity between Node A and the other given

node was achieved. The measurements were made for 3 different cases; in each case, the

65

VATM was configured with a different protocol stack. The different combinations of the
protocol stack were:
e SAR+DLC
In this case the IP packet coming from the higher layer (as CLIP) was
segmented into a train of ATM cells and passed to the DLC. The number
of cells in the DLC packet was 7. The DLC packet was passed to the ATM
card which sent it as an AALS packet.
e SAR
In this case the IP packet coming from the higher layer (as CLIP) was
segmented into a train of ATM cells which passed to the ATM card. The
ATM card sent the train of cells as an AALS packet.
e DIC
In this case the IP packet coming from the higher layer (as CLIP) was put
in a DLC packet and passed to the ATM card which sent it as an AALS
packet.

In each of the 3 cases, no software ATM switching was done at the MAPs; instead IP
forwarding was enabled on all the MAPs. The throughput observed has been shown in
Figure 33 and Table 3.

Throughput between Node A & other nodes observed using FTP for

10 Mbps links
ESAR+DLC
?
s SAR
2
]
£ OpLc
o
-
o
£
|_

A-B A-C A-D A-E A-F A-G

Figure 33: Throughput Results for the 7 Node Scenario with different protocol stacks on the VATM

66

Source-Destination SAR+DLC SAR DLC
Pair (Mbps) (Mbps) (Mbps)
A-B 8.1108 8.192 9.0122
A-C 6.30784 6.4717 8.1108
A-D 43418 4.4237 5.4067
A-E 3.6864 3.6864 4.5875
A-F 4.3418 4.5056 5.4067
A-G 3.6864 3.9322 49152

Table 3: Throughput Results for Different Protocol Stack on the VATM

The features of the results that should be noted are:

Minimum throughput was observed (in all the 3 cases) between Node A &
Node E. This was expected as the number of hops between Node A & Node
E was 4 at all instances.

Throughput between Node A & Node G was more than between Node A &
Node E even though initially the route between Node A & Node G was 5
hops. This is so because as Node F & Node G moved eastwards, the route
taken by packets from Node A to Node G changed from 5 hops to 4 hops and
finally to 3 hops.

The least throughput was observed when the VATM protocol stack was
configured as SAR+DLC. This is so because of the overhead of the SAR layer
which would have attached 5 bytes for every 48 bytes and also because of the
DLC layer which would have added 8 bytes (header + trailer) for every 7
ATM cells.

The throughput when the VATM protocol stack was configured as SAR only
was greater than the SAR+DLC case but less than that observed for the DLC
only case. The reason for the former is that the DLC overhead i.e. 4 bytes of
header and 4 bytes of trailer, for every 7 ATM cells were not there.

The throughput was highest when the VATM protocol stack was configured
as DLC only. This is so because there was no SAR overhead and the DLC

67

overhead were also reduced. In case of SAR+DLC, there were 8 bytes of DLC
for every 7 ATM cells. This reduced to 5 bytes
(AAL_DLC_GLUE_LAYER) plus 8 bytes (DLC) for every IP packet.

header was

The throughput between Node A & Node G was also measured when the VATM was
configured with the SAR+QoS+DLC protocol stack. In this case, software ATM
switching was done at the MAPs unlike IP forwarding in the above 3 cases. The support
for the flow establishment/re-establishment was implemented by Saravanan
Radhakrishnan. More detailed information about it can be found in his thesis titled “In-
Band Flow Establishment for end-to-end QoS Support in RDRN”. In this case the tool
used to measure the throughput was a modified (by Saravanan Radhakrishnan) version of

ttep. The results for different size of packets has been shown in Table 4:

of Packets | Size Oﬁél;fels))“kets Tx Rate (Mbps) Rx Rate (Mbps)
2048 512 3.6618 3.6563
2048 1054 6.7584 6.5782
2048 1536 9.8877 9.6583

Table 4: Throughput Result for SAR+QoS+DLC stack on the VATM

Hence, if we compare the results from Table 3 & Table 4, we can see that for small
packets the throughput achieved for the SAR+QoS+DLC (i.e. ATM connectivity) is
actually less than that observed with IP connectivity. However, the throughput achieved
for larger packets is appreciably greater than that observed with IP connectivity.

The throughput achieved between Node A & Node G when they had IP connectivity
measured with #zcp is as follows for the SAR+DLC protocol stack:

of Packets Size of the Packets Throughput
(Bytes)
(Mbps)
2048 512 3.9813
2048 1054 4.4237
2048 1536 5.5296

68

Table 5: Throughput between Node A & Node G for IP connectivity with SAR+DLC

4.2 Scenario 2

The following scenario consisted of 7 nodes, 5 MAPs and 2 MEPs as shown in Figure 34.

All the nodes are moving except for Node G. The MAPs traverse along the perimeter of
the exterior pentagon while Node F traverses along the perimeter of the interior pentagon.
At the end of the emulation period, they return back to the GPS location they started
from. The speed at which the nodes move is 480 km/hr. The different states of

connectivity have been shown in Figure 35 & Figure 39.

State 6

Figure 34: Scenario 2

69

State 1

State 2
Figure 35: State 1 of Connectivity in Scenario 2 Figure 36: State 2 of Connectivity in Scenario 2
E D
.
A E
|
F
G G
c
|
|
|
F
B - A
c State 3 B State 4
Figure 37: State 3 of Connectivity in Scenario 2 Figure 38: State 4 of Connectivity in Scenario 2

70

State §

Figure 39: State 5 of Connectivity in Scenario 2

4.2.1 Ping Results

The average RTT between Node F & Node G for the ping application was measured by
forcing 2000 ping packets. This was done whenever it was observed that the route

between Node F & Node G had changed. The graph below (Figure 40) shows the result

obtained.
Aoursd Trig Thse badisan Bk 1 6 Fiods G
Cavaduion Thee
4. . : .
&
E
*
¥
E=3
£ ox
X
5 »
.
&
=
s *
5 N
1o
21>
BT & d T s 5 w e e s e

Epniintion Taw {xerombng

Figure 40: Round Trip (for ping) between Node F & Node G vs Emulation Time

71

The state of connectivity of the network at t=30s, 90s, 150s, 210s 270s was as shown in
Figure 35-39.

Hence, the route taken by a packet from Node F to Node G at the above time was:

{F>A—»B—->C—-G} {F>A->B—-G} {F5A—>G} {F2A—E—-G} {F5>A—-E—>D—-G}

4.2.2 Connectivity Results

The emulation time for this scenario was 1 hour and the time taken to establish
connectivity between Node F & Node G was measured for different Hello Intervals. The
results are as shown in Table 5. As expected the time taken to establish the connectivity

was minimum for the smallest Hello Interval (2 seconds).

Hello Interval Time (seconds) taken to
(seconds) Establish Connectivity

2 18

3 24

4 27

Table 6: Time taken to establish connectivity between Node F & Node G

4.2.3 Throughput Results

For this scenario, the throughput measurements were made only for the SAR+DLC case
only. The following graph shows the throughput between Node F and the other nodes for
10 Mbps link using the FTP application. The size of the file transferred was
approximately 20Mbps. The FTP application was started as soon as connectivity was
established between Node F and the other concerned node. The result observed has been

shown in Figure 41.

72

Throughput between Node F & other nodes observed using FTP for
10 Mbps link

3
BSAR+DLC
o
.
6]
g
o
g 5
i
[-]
g 1
E
|
2]
1
oA
F-A F8 FC | FD FE F-G
ESAR:DLC| 7.0962 6.1621 4478 | 41779 6.1621 3.6864

Figure 41: Throughput Results between Node F and other nodes in Scenario 2 with SAR+DLC
VATM
The following graph shows the throughput between Node G and the other nodes for 10
Mbps link using the FTP application. The size of the file transferred was approximately
20Mbps. The FTP application was started as soon as connectivity was established
between Node G and the other concerned node. The result observed has been shown in

Figure 42.

73

Throughput between Node F & other nodes observed using FTP for

10Mbps link

Throughput (Mbpe)
w

0
G-A

G-B

G-C

G-D

G-E

GF

ESAR+DLC 3.6045

4.9152

4178

\

2.8672

\

2.6214

\

3.52256

Figure 42: Throughput Results between Node G and other nodes in Scenario 2 with SAR+DLC
VATM

We can see from the above graph (Figure 42) that the throughput between G-B is greater
than that observed between G-C, though Node C was a neighbor of Node C to start with.
The FTP application was started as soon as connectivity was achieved between Node G
and Node C, but however the file transfer could not complete before the Node G-Node C
link went down. Hence, some packets from Node G to Node C took the G-C path and
some took the G-B-C path; with more taking the latter path. However, for the file transfer
between Node G and Node B, fewer packets took the G-C-B path and more took the

direct G-B path.

This shows that the above throughput results are a not a very accurate indicator of

connectivity for this particular scenario because the throughput observed was dependent

at what time the FTP application was started.

74

If you follow reason far enough it always leads to
conclusions that are contrary to reason.

Samuel Butler

Chapter 5

Conclusions & Future Work

This chapter briefly draws out the conclusion of this work and looks in to possible areas

of work that need to be addressed in the future.

75

5.1 Conclusion

The three major objective of this work was to do a design and implement an emulation
environment, do a comparative evaluation of IP vs ATM for a highly dynamic
environment like RDRN and to measure the scalability of the network controller
(software modules). The conclusion for each of the above has been outlined in the

following section.

5.1.1 Emulation Environment

We successfully implemented a repeatable, a controlled and a scalable emulation

environment with minimal changes to the existing software modules.

5.211P vs ATM

We saw in Section 4.1.3 that the maximum throughput was observed between any two
nodes when the VATM was configured as SAR+QoS+DLC. This was followed by the
DLC case and then by the SAR+DLC case. This showed that the maximum throughput
could be achieved if the end-to-end connectivity between the RDRN nodes was ATM
based and a QoS layer was there to do the scheduling. However, the problem with this
approach is that to utilize the QoS layer, the source-code of the applications need to be

modified to set the options on the socket and to set the priority for the traffic.

The throughput observed when the RDRN nodes had end-to-end IP connectivity
(SAR+DLC and DLC case) was obviously less than that for the ATM connectivity
because each of the IP packets were reassembled at the intermediate nodes before being
forwarded depending upon the entries of the routing table. However, the throughput
observed for the DLC protocol stack on the VATM was greater than that for the
SAR+DLC protocol stack. This was because the overhead of segmentation and re-

assembly was removed and the DLC overhead per IP packet was also reduced.

76

5.2.2 Scalability

Before this work, the software modules (network controller) had been used only for a 3-
node scenario. As part of this work, we executed two network scenarios, each consisting
of 7 nodes, in the emulation environment and successfully demonstrated that software
modules do scale-up. However, larger scenarios need to be tested in the emulation

environment to get a more accurate measure of the scalability of the system.

5.2 Future Work

5.2.1 Topology Algorithm

The topology algorithm needs to be improved so as to guaranty connectivity to all the
nodes in a complex network scenario. As explained earlier, on the MAPs, the topology
algorithm tries to establish high-speed connection between the nearest four nodes and on
the MEP it tries to establish the high-speed connection to the nearest MAP. Let us

consider the following network scenario:

A

° ®

Figure 43: Network Topology with the present algorithm

77

Let us assume that Node A is within the high-speed range of Node C only. With the
present topology algorithm, Node C would try to connect to the nearest 4 and hence
would not connect to Node A i.e. Node C would connect to B, D, F & G. This way Node

A would never get connected even though it was within the high-speed range of Node C.

Hence, more intelligence need to be added to the topology algorithm so that it could set
up the following scenario:

A

Figure 44: Network Topology with a more “intelligent’’ algorithm

In the above topology, Node C did not connect to Node E because it knew that if it did so

it would be “isolating” Node A from the network.

5.2.2 Wireless Channel Model

The present emulation environment does not include any model to emulate the wireless
channel characteristics. Hence, a possible area of future work would be include a layer in
the VATM protocol stack which would incorporate the characteristics of the wireless

channel; and a “handle” to control these characteristics at run-time.

78

5.2.3 Performance Metrics for Larger Scenarios

As part of this work, two network scenarios were executed in the emulation environment.
Larger and more complicated network scenarios need to be tested, especially with the

terrain blocking.

79

Appendix

Appendix A:
A.1 Commands Related to VATM:

i. vatm_ctl -1
-- to list virtual devices
This command lists all the VATM:s that have been created and lists the following
information about the VATM:

Itf = 1

DEVICE TYPE = ATM

VCI HOOK = 201

VPI HOOK = 0

My MAC ADDRESS = 0 20 ea 0 1 41

Underlying Interface Itf = 0

TOP LAYER

Layer AAL
tx_packets =
rx_packets =
tx_errors =
rX_errors =

INTERMEDIATE LAYER

Layer SAR
txX_packets
rx_packets
tx_errors = 0
rX_errors =

BOTTOM LAYER

Layer DLC
tx_packets
rx_packets
tx_errors = 0
rx_errors = 0

STATISTICS FOR THE VDEVICE

tx_sent = 0

tx_dropped = 0

rx_received = 0

rx_dropped = 0

0

0
0
0

[l =]

uou

[= e

nu

ii. vatm_ctl -c {type=atm} interface_id pvc=## {type=sar\dicisar+dicisar+qos+dic} [local_esi_addr]
[qos ubr/cbr:pcr=X]

--to create a virtual device over ATM

This command is used to create the VATM. The options are defined
below:

30

jii.

vatm_ctl -¢ option is to create the VATM

{type=atm} specifies the fact that the VATM would be created over an ATM card
interface_id indicates the interface # of the ATM card

pve=# specifies the physical VCI with which the VATM would be hooked to the ATM
card.

{type=sar\dicisar+diclsar+qos+dic} specifies the protocol stack for the VATM
[local_esi_addr] specifies the ESI address

[qos ubr/cbr:pcr=X] specifies the qos parameter for the physical VCI

vatm_ctl -c {type=eth} interface_id {type=rawlmacimac+rca} [local_esi_addr] [remote_esi_addr]

{type=sarldiclsar+diclsar+qos+dic}
-- to create a virtual device over ETHERNET

vatm_ctl -¢ option is to create the VATM

{type=eth} specifies the fact that the VATM would be created over an Ethernet card
interface_id indicates the interface # of the Ethernet card

{type=rawlmacimac+rca} specifies the mode of operation, raw and mac+rca is specific for
the RDRN radios.

{type=sarldicisar+diclsar+qos+dlc} specifies the protocol stack for the VATM
[local_esi_addr] specifies the local ESI address

[remote_esi_addr] specifies the remote EST address

iv. vatm_ctl -d interface
-- to destroy a virtual device
v. vatm_ctl -i parameter value_of _parameter vatm_itf
--to change the parameters of a layer
--parameter = DLC_SETFRAME_SIZE
A.2 Examples

A.2.1 To create a VATM (with SAR+DLC) on an ATM card

vatm_ctl -c atm 0 pve=201 sar+dlc 0020ea000130 gos cbr:pcr=10Mbps

81

A.2.2 To create a VATM (with SAR only) on an ATM card

vatm_ctl -c atm 0 pve=202 sar 0020ea000131 gos cbr:pcr=10Mbps

A.2.3 To create a VATM (with SAR+QoS+DLC) on an ATM card

vatm_ctl -c atm 0 pve=203 sar+qgos+dlc 0020ea000132 gos
cbr:pcr=10Mbps

A.2.4 To create a VATM (DLC only) on an ATM card

vatm _ctl -c atm 0 pvec=204 dlc 0020ea000133 gos cbr:pcr=10Mbps

A.2.5 To destroy a VATM

Let’s us assume that the ITF of the VATM that we wish to destroy is 1.

vatm_ctl -d 1

A.2.6 To change the # of ATM cells that in a DLC frame
The following command would set the number of ATM cells in the DLC packet to 10 for

the VATM whose ITF is 1

vatm_ctl -i DLC_SETFRAME_SIZE 10 1

A.2.7 To create the VATM and run it on the RDRN radios

Suppose we have the following configuration:

Node A Node B

i 3 mmw =
0 0

Network controller i Network controller

Ethémet

RDRN Radio ; j RDRN Radio

Ethernet =

Figure 45: Running VATM on the RDRN radios

82

Let’s say that ESI (End System Identifier) for the VATM on Node A is 0020ea000130 and on
Node B is 0020eb000130

Hence to create the VATM with SAR+DLC protocol stack the following command needs to be

executed:

Node A:
vatm_ctl -c¢ eth 1 mac+rca 0020ea000130 00eb000130 sar+dlc

Node B:
vatm_ctl -¢ eth 1 mac+rca 0020eb000130 00ea000130 sar+dlc

Here, we have used “eth 1” since we have assumed that the network controller is
connected to the radios on the second Ethernet card. If there were only 1 Ethernet card on

the machine and that was the one connected to the radios, then it would have been “eth 0”

A.2.8 To set the credits on the VATM for the RDRN radios

This command is used to set the credits for the RDRN radios i.e. when the VATM is built
on the Ethernet.

Suppose we have a VATM that is built on the ethl, then to set the credits to 2000 (say),

the following command needs to be executed.

vatm_ctl -s ethl credits 2000

83

Appendix B

B.1 Routing Algorithm

Program main
do
wait HI until
ConnectMsg (k)
Connect-To (k)
LinkDownMsg (k)
Lost-Link (k)
Recv-Packet (p)
Recv (p)
Timeout-Event (e)
Timeout-Handler (&)
tiaw
forever
end

Procedure Timeout-Handler (e)
for each k in B,
if (BX.timeout == e)
B, = By - k
return
fi
rof
for each k in Ny
if (N¥..timeout == e)
Lost-Link (k)
return
fi
rof
Send B_HELLO //Broadcast
Send-Updates ()
end

Procedure Forward-Packet (p)
R, = Find in Table (p.dst)
min = infinity
for each k in Ry

if(k(R%q) == p.src) continue
if(D(R%g) < min)
min = D(R%;)
n =k(R)
fi
rof
send pton
end

84

Procedure Recv (p)
If (p.port == ROUTER_PORT)
Process-Update (p)
Else
Forward-Packet(p)
Fi
End

Procedure Lost-Link (k)
for each destination j
Update (RY,, infinity)
Rof
end

Procedure Process-Update (p)
switch(p.type)
case B_HELLO :
if(k ¢ B,) return
BX.ctr ++
If(BX.ctr == 3)
Add-Nbr (k)
Send-Summary (k)
fi
return
esac
case N_HELLO :
if(ke Nx)
Add-Nbr (k)
Send-Summary (k)
else
cancel (N¥.timeout)
N¥..timeout = schedule (3*HI)
fi
break
esac
case SMRY :
iftke Nx)
Add-Nbr (k)
Send-Summary (k)
else
if (now - N&.addtime > HI)
Send-Summary (k)
fi
fi
esac
hctiws
for each U in p
Verify-Update (UY)
rof
end

Procedure Verify-Update (UY)

if (U D == INF)
Update (R%;, UY)
return

fi

if ((Uk{(D ==08&% ke Ny ||
U4.D ==R,.D)
Update (R, , UY)

return
else
U4 .D = INF
Update (R%; , UY)
return
fi
end

Procedure Update (R, , U%)
for each nin N,

min_before[n]=Find-Min (Ry4,n)

rof
RD=U%D+1
R&;.P = UN.P

for each kin N,
min_after = Find-Min (Ry,n)
if(min_after=min_before[n] ||
min_before[n]==k)
ij = Nx] + k

rof
end

Procedure Send-Summary (k)
New UPDATE (U*)
for each destination j
UY =FindMin(R ,k)
Add UY to U
Rof
sort U*
send U* to k
end

Procedure Send-Updates ()
for each k in N,
new UPDATE (U%)
for each destination j
if(k e Ny)
U4 = FindMin (R k)
Add UY to U*
ij = ij -k
Fi
Rof
sort Uk
Send U* to k
Rof
End

Table 7: Routing Algorithm™’

85

B.2 Verify Routing Update & Update Table Algorithm

Procedure Verify-Update (U)
// if reported distance to j is infinity
if (D(UY) == infinit{)
Update-Table (R%;, U)
return
fi

// if we have an entry in the table for the
// predecessor with the same reported
/[distance
// or the reported distance is 0 and the
// destination is a neighbor
if ((D(UY)==08&&ke Ny ||
D(U%) == D(R%,))
Update-Table (R%;, UY)
Return
Else
U .D = infinity
Update-Table (R%;, U%)
Return
fi
end

Procedure Update-Table (R%;, UY)
// find the shortest path information
// that was reported to each neighbor
// before updating the information
for each n in N,
min_before[n]=Find-Min (R,; ,n)
rof
// update the entry
D(R%y) = D(U%) + 1
P(R) = P(UY)
// find the shortest path information
// to each neighbor after the update
for each k in N,
min_after = Find-Min (R4 ,n)
// if the shortest path information changed
if(min_afterzmin_before[n] ||
min_before[n]==k)
// add the neighbor to the list of
// neighbors to be updated
ij = ij + k
fi
rof
end

Table 8 Verify Routing Update & Update Table Algorithm™!

B.3 Send Routing Update & Send Routing Summary Algorithm

Procedure Send-Updates ()
// for each neighbor
for each k in Ny
new UPDATE (U¥)
for each destination j
// if neighbor k is affected by
// changes in this entry
if(k € Ny)
U = FindMin (Rg ,k)
Add U to U*
Ny = Ny~ K
fi
rof
sort U
Send U* tok
Rof
End

Procedure Send-Summary (k)
new UPDATE (U
for each destination j
// Find shortest path not through k
UY =FindMin(Rg ,K)
Add U¥ to U
rof
// sort the entries in the update by
// distance
sort UX
send U* to k
end

Table 9 Send Routing Update & Send Routing Summary Algorithm®

86

Appendix C

C.1 An Example of Port-Map File

$ This is the KU port map file.

$

$ spud ports lal - la4,
S lcl - 1c4
S 1dl -~ 1d4
pm

at:APM Ver:1.0:string

ar:atm_type:1
ty:spud:ASX200bx:asx::

ar:map_rdrn_atm:12
mr:spud:lc2:testbed8:1al:
mr:spud:1d2:testbed9:1al:
mr:spud:lad:testbedll:1lal:
mr:spud:la2:testbedll:1lal:
mr:spud:la3:testbedl2:lal:
mr:spud:lc3:testbedl3:1lal:
mr:spud:lcd:testbedld:lal:
mr:spud:lal:testbedl5:1lal:
mr:spud:1dl:testbedlé:1lal:
mr:spud:1d3:testbedl7:1al:
mr:spud:lcl:testbed2:1lal:
mr:spud:1dd:testbed5:1lal:

pe

C.2 An Example of the Scenario File

$ This is a 4-node scenario with 2 stationary MAPs, a stationary MEP
$ and a mobile MEP.

$ Text drawing of scenario. The dotted line is where the mobile node
$ move to.

$ O = MAP

$ X = MEP starting position

$ = path

$ X

$

$ 0

$

$

$

$

$

$ X

$

$ o)

si

87

at:SDF_Ver:1.6:string
se

pi
at:platform_name:jeepl:string
at:comms_entity type:MEP:string
ar:state:2
st:0.0:-95.0:38.85:10.0:::::

ep

pi
at:platform_name:jeep2:string
at:comms_entity_type:MEP:string
ar:state:1

s£:0.0:-95.25:38.99:10.0:::::
ep

pi
at:platform_name:truckl:string
at:comms_entity type:MAP:string
ar:state:l

5t:0.0:-95.24:38.95:10.0:::::
ep

pi
at:platform_name:truck2:string
at:comms_entity_ type:MAP:string
ar:state:1l

st:0.0:-95.1:38.86:10.0:::::
ep

88

Appendix D

D.1 Scenario File for Scenario 1 as shown in Section 4.1

This scenario uses 7 nodes. One mobile MAP, one mobile MEP, three
stationary

MAPS and two stationary MEPs.

Text drawing of scenario. The dotted line is where the mobile node
move to.

O = MAP starting position

X MEP starting position

path

Oy U U Ur Ur Uy U A
1}

vr Ur U Uy I Nt

si
at:SDF_Ver:1l.6:string
se

$ Stationary MAP on left

pi

at:platform_name:MAP_west:string

at:comms_entity type:MAP:string

ar:state:l
st:0.0:-95.5:38.5:10.0:::::

ep

$ Stationary MAP in middle
$ 7 km to the east of MAP_left

pi
at:platform_name:MAP_middle:string
at:comms_entity_ type:MAP:string
ar:state:1

st:0.0:-95.439798:38.5:10.0:::::
ep

$ Stationary MAP on right
$ 8 km to the east of MAP_middle

pi

at:platform_name:MAP_east:string
at:comms_entity_ type:MAP:string

89

ar:state:l
st:0.0:-95.3681306:38.5:10.0:::::
ep

$ Mobile MAP
$ start 3.5 km west and 5 km north of MEP_left

pi
at:platform_name:MAP_mobile:string
at:comms_entity_ type:MAP:string
ar:state:2

ep
$ Stationary MEP on left

pi

at:platform_name:MEP_left:string

at:comms_entity_ type:MEP:string

ar:state:1
st:0.0:-95.533423:38.472250:10.0:::::

ep
$ Stationary MEP on right

pi

at:platform_name:MEP_right:string

at:comms_entity_type:MEP:string

ar:state:1l
st:0.0:-95.331157:38.478426:10.0:::::

ep

S Mobile MEP
pi
at:platform_name:MEP_mobile:string

at:comms_entity type:MEP:string
ar:state:2

€p

90

D.2 Scenario File for Scenario 2 as shown in Section 4.2’

$ This scenario uses 7 nodes. One stationary MEP, 1 mobile
$ MEP and 5 mobile MAPs.

$ Text drawing of scenario. The dotted line is where the mobile node
move to.

$ O = MAP starting position

$ X MEP starting position

S path

$

si
at:SDF_vVer:1.6:string
se

$ MAP at bottom left

pi

at:platform_name:MAP_l:string

at:comms_entity_type:MAP:string

ar:state: 6

$ bottom left
st:0.0:-95.25:39:10.0:::::

$ top left
st:60.0:-95.2761:39.061:10.0:::::

$ top right
st:120.0:-95.2075:39.1174:10.0:::::

$ bottom right
st:180.0:-95.1359:39.0718:10.0:::::
st:240.0:-95.1577:39.00017:10.0:::::

$ bottom -left
st:300.0:-95.25:39:10.0:::::

at:platform_name:MAP_2:string

at:comms_entity_type:MAP:string

ar:state:6

Stop left
st:0.0:-95.2761:39.061:10.0:::::

$ top right
st:60:-95.2075:39.1174:10.0:::::

$ bottom right
st:120.0:-95.1359:39.0718:10.0:::::
st:180.0:-95.1577:39.00017:10.0:::::

$ bottom left
st:240.0:-95.25:39:10.0:::::

" The scenario here shows only the states of the node for the first 300 seconds only. After the 300 seconds,
they repeat their states for the duration of the emulation period.

91

$ top left
st:300.0:-95.2761:39.061:10.0:::::
ep

$ MAP at top right

pi

at:platform_name:MAP_3:string

at:comms_entity type:MAP:string

ar:state:6
st:0.0:-95.2075:39.1174:10.0:::::

$ bottom right
st:60.0:-95.1359:39.0718:10.0:::::
st:120.0:-95.1577:39.00017:10.0:::::

S bottom left
st:180:-95.25:39:10.0:::::

$ top left
5t:240.0:-95.2761:39.061:10.0:::::

$top right
st:300.0:-95.2075:39.1174:10.0:::::

€ep

$ MAP at right bottom

pi

at:platform_name:MAP_4:string

at:comms_entity_ type:MAP:string

ar:state:6
st:0.0:-95.1359:39.0718:10.0:::::
s8t:60.0:-95.1577:39.00017:10.0:::::

$ bottom left
st:120:-95.25:39:10.0:::::

$ top left
st:180.0:-95.2761:39.061:10.0:::::

$ top right
5t:240.0:-95.2075:39.1174:10.0:::::

$ bottom right
st:300.0:-95.1359:39.0718:10.0:::::

ep

pi

at:platform_name:MAP_5:string

at:comms_entity_type:MAP:string

ar:state:6
st:0.0:-95.1577:39.00017:10.0:::::

S bottom left
st:60:-95.25:39:10.0:::::
s$t:120.0:-95.2761:39.061:10.0:::::
st:180.0:-95.2075:39.1174:10.0:::::

$ top right
st:240.0:-95.1359:39.0718:10.0:::::

$ bottom right
st:300.0:-95.1577:39.00017:10.0:::::

$ top left

ep

92

$ MEP

pi

on left

at:platform_name:MEP_left:string
at:comms_entity type:MEP:string
ar:state:6

st

st:
st:
st:
st:
st:

ep

$ MEP

pi

:0.0:-95.2646:39.0612:10.0::
60.0:-95.2072:39.1084:10.0:
120.0:-95.1475:39.0716:10.0
180.0:-95.1695:39.0105:10.0
240.0:-95.2387:39.0092:10.0
300.0:-95.2646:39.0612:10.0

on right

at:platform_name:MEP_right:string

at:comms_entity_ type:MEP:string

ar:state:1l
s£:0.0:-95.1241:39.063:10.0::::

ep

.....

93

References:

[1] RDRN: A Rapidly Deployable Radio Network: Implementation & Experience (ICUPC 98,
Florence, Italy) Ricardo J Sanchez, Joseph B. Evans, Gary J. Minden, Victor S.Frost and K.
Sam Shanmugam

[2] J.H. Condon et al. Rednet: A Wireless ATM Local Area Network using Infrared Links. In
Proc. First International Conference on Mobile Computing and Networking (MOBICOM
’95), November 1995.

[3]1 K.Y.Eng et al. BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network. In Proc,
International Conference on Communication (ICC ’95), June 1995.

[4] L. French and D. Raychadhauri. The WATMnet System: Rationale, Architecture, and
Implementation. International Proceeding IEEE Comp. Communication Workshop,
September 1995.

[5]1 Multi-Path Routing Protocol for Rapidly Deployable Radio Networks, MS Thesis, University
of Kansas, January 1999. Fadi Wahhab.

[6] Linux ATM device driver interface Draft, Werner Almesberger, Laboratoire de Reseaux de
Communication (LRC) EPFL, Lausanne, Switzerland, February 1996.

[71 RDRN Emulation Manager Documents, Leon Searl, Swan Aircraft Inc., Available at
http://www.ittc.ukans.edu/~searl

[8] How to Configure Linux for ATM Networks, Wayne Salamon, National Institute of Standards
and Technology, June 1998.

[9]1 Pthreads Programming, Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell,
O’Reilly & Associates, Inc.

[101 ATM on Linux, User’s Guide, Werner Almesberger.
Available at http://www.lrcwww.epfl.ch/linux-atm/.

94

Adaptive HDLC

ATM 0018 cveereeiiiciteeee et et

...14, 15, 16, 28, 29, 33, 34, 37,40

beamfOrmingccoceeereereeveennnereoressesiuncnna 12, 13,16
.. 33

See CLIP

41,42,43

E
Emulation Manager......... 24, 27, 30, 31, 34, 35,37, 58
End System Identifier........c.cccocooeveiincnncnee. See ES1

F
FORE-ATM SWitCh....cccociveeiireceveenne 25,29, 30, 31
FTP.. ettt eve st e srnssnessansessasnnens 62
Global Positioning Systemc.ceevecceccnennes See GPS
GIOMO ...ttt eere e b et sessaesaneees 12
(€ 2 14, 16, 26, 27, 32, 34, 37, 58, 65
H
Hello Intervalcoevvvveccuveivnnrenneenne 51, 53, 59, 60, 62
Hello Packetccocvvrceernreinnvnnrennnenns 31, 34, 37,51, 52
L
Linux Kernelcocoooveeveriiccierriiccieeee e 24
LinuxX-ATM ...oooiiiiiniiniieiecee e sreevee e ereenne e 16,41

95

logical VCI ... 29

MAPI13, 14, 15, 28, 29, 40, 50, 57, 63, 65, 74, 84, 86,
88
MEP...13, 14, 15, 24, 28, 29, 40, 57, 65, 74, 84, 86, 88

MICTO-SWILCH ... vrriee et e eee e 16
Mobile Access PointsSee MAP
Mobile End Points....... . See MEP
MNUIPIEXING . .cvveiesiiirieererieersrirrenreeresrresecrscescernennne 29
mutex Variableccccerviirveiiiiiinei e, 54
N
NetlinK .ot rree s v 52,55
NETLINK_ROUTE.........cccoovviiriiiiictineeeenrerneennens 55
NMEA ...ttt s ereseseesreaseans 27
orderwire.............. 13, 14, 15, 21, 26, 28, 32, 33, 34, 37
P
packet radio ...
Physical VCI....

Q
QOS .. ins 21,42, 65
R
RDRN....ccvververiiene 10, 11, 12, 14, 16, 17, 19, 40, 50
Red-Hatocveecrniiiciicininnceenencnne, 24
REANEL......oviieriicniiiie et cereer et 12
Referencescocooveviiinincincnrennnricnnesinencnnes 91
ROULING ..cuveveereeeirrisiiiiieciircr e nreenee e See WMRP
Routing Algorithm........cccoceoreeoievceennniiniennens 81,83
routing table............
RTT oo
Runtime Manager
S
SAR .ottt
scalability......
Scenario File
shared MEMOTYcocoiieeremnreervenrirneenreereesessesreennens 53
Simple Network Management Protocol....... See SNMP
SNMP ...ttt s reneseene 30
SPHEt hOTIZON ..t 18

SynChroniZation.........cveeceerenvererneieicceeninesrisenrenseneee 53
T

TCP et e enes 31,34

TDMA oottt e 40

terrain blocking ... 76

LESIDE oocrirereeir e 21,24
thrOUGHPUL ..ottt eraess e 63
Throughput... . See throughput
LOPOIOZY ceeecveerirviriistirieerccrnessreteee e 16, 28, 37, 74
BECP eovveueerereeeesunenececrsesnssiesssessesseasesesssessssnssssensessessesos 65
U

UDP.....oeeetecceienree et eeseaes 27,31
User Datagram Protocolccecneicceninnnnnns See UDP

96

